DOI QR코드

DOI QR Code

Toxicity and Characteristics of Antifungal Substances Produced by Bacillus amyloliquefaciens IUB158-03

Bacillus amyloliquefaciens IUB158-03이 생산하는 항진균물질의 생화학적 특성 및 독성

  • Published : 2009.11.30

Abstract

The purified antifungal substances produced by Bacillus amyloliquefaciens IUB158-03 was positive to ninhydrin but negative to aniline, suggesting that the antifungal substance could be a peptide. FAB-MS, UV adsorption spectrum, and amino acid composition analysis revealed that the molecular weight of the antifungal substance was 1042 and that maximal adsorption was at 220 nm and 277 nm. The antifungal substance was composed of $Asn_3$, $Gln_2$, $Ser_1$, $Gly_1$, and $Tyr_1$. The composition and structural characteristics of antifungal substance were analysed by $^1H$-NMR spectrum, $^1H$-COSY, HMQC, which revealed that the compound belongs to the iturin A family. Temperature and pH had little effect on the stability of the antifungal substance in the ranges of $-70{\sim}121^{\circ}C$ and pH 6.0~10.0, respectively. It showed strong antibiotic activity against fungi. An in vitro cytotoxicity test using NIH3T3 cell showed that the antifungal substance does not have cytotoxicity. The number of circulating leukocytes and the hematobiological analysis of the mice administered with the antifungal substances was similar to those of the control group, indicating no cytotoxicity in vivo. Therefore, the antifungal substances extracted from culture broth of Bacillus amyloliquefaciens IUB158-03 have future potential as biocontrol agents against plant diseases caused by fungi.

B. amyloliquefaciens IUB158-03균주에서 정제된 항진균물질은 극성인 용매에 잘 용해되고, pH 6.0~10.0와 $-70{\sim}121^{\circ}C$에서와 같이 넓은 범위의 온도 및 pH에서 안정성을 보였다. 항진균물질의 FAB-MS, UV 흡수 스펙트럼, 아미노산 조성 등을 분석한 결과 분자량은 1,042 이었고, TLC를 이용하여 분석한 결과 ninhydrin solution에서 보라색으로 발색되었다. UV 스펙트럼은 220 nm, 277 nm에서 ${\lambda}max$를 보였으며, $Asn_3$, $Gln_2$, $Ser_1$ $Gly_1$, $Tyr_1$의 아미노산 조성을 갖는 것으로 나타났다. 그리고 $^1H$-NMR spectrum, $^1H$-COSY, HMQC 을 분석한 결과 iturin A계에 속하는 물질로 확인되었다. NIH3T3 섬유아세포에 대해 항진균물질이 세포독성을 나타내지 않는 것은 물론 마우스에 항진균물질을 경구투여하여 장기 내의 변화와 백혈구 수, 생체내의 생리적인 기능면에서 정상 마우스와 차이를 보이지 않았으므로 생체독성이 없는 것으로 나타났다. 따라서 본 연구를 통하여 B. amyloliquefaciens IUB158-03에서 분리된 항진균물질이 앞으로 고추탄저병의 생물적 방제제로 이용될 수 있는 잠재성을 갖고 있는 것으로 사료된다.

Keywords

References

  1. Besson, F., F. Peypoux, G. Michet and L. Delcambe. 1977. Structure de la Bacillomycin L, antibiotics gene de Bacillus subtilis. Eur. J. Biochem. 77, 61-67 https://doi.org/10.1111/j.1432-1033.1977.tb11641.x
  2. Bidlingmeyer, B. A., S. A. Cohen, and T. L. Tarvin. 1984. Rapid analysis of amino acids using pre-column derivation. J. Chromagraphy. 366, 93-104
  3. Brannen, P. M. and D. S. Kenney. 1997. Kodiak-a successful biological-control product for suppression of soil-borne plant pathogens of cotton. J. Indust. Microbiol. Biotechnol. 19, 169-171 https://doi.org/10.1038/sj.jim.2900439
  4. Chen, H., C. Yuan, K. Cai, Z. Zheng, and Z. Yu. 2008. Purification and identification of iturin A from Bacillus subtilis JA by electrospray ionization mass spectrometry. Wei Sheng Wu Xue Bao. 48, 116-120
  5. Cho, S. J., S. K. Lee, B. J. Cha, Y. H. Kim, and K. S. Shin. 2003. Detection and characterization of the Gloeosporium gloeosporioides growth inhibitory compound iturin A from Bacillus subtilis strain KS03. FEMS. Microbiol. Lett. 6, 47-51
  6. De Carli, L. and L. Larizza. 1988. Griseofulvin. Mutat. Res. 195, 191-196
  7. Dykstra, K. H. and H. Y. Wang. 1990. Feedback regulation and the intracellular protein profile of Streptomyces griseus in a cycloheximide fermentation. Appl. Microbiol. Biotechnol. 34, 191-197 https://doi.org/10.1007/BF00166779
  8. Emmer, G., N. S. Ryder, and M. A. Grassberger. 1985. Synthesis of new polyoxin derivatives and their activity against chitin synthase from Candida albicans. J. Med. Chem. 28, 278-281 https://doi.org/10.1021/jm00381a003
  9. Gueldner, R. C., C. C. Reilly, P. L. Pusey, C. E. Costello, R. F. Arrendale, R. H. Cox, D. S. Himmelbach, F. G. Crumley, and H. G. Cutler. 1988. Isolation and identification of iturins as antifungal peptides in biological control of peach brown rot with Bacillus subtilis. J. Agri. Food. Chem. 36, 366-370 https://doi.org/10.1021/jf00080a031
  10. Kajimura, Y. and M. Kaneda. 1997. Fusaricidins B, C and D new depsipeptide antibiotics produced by Bacillus polymyxa KT-8: isolation, structure elucidation and biological activity. J. Antibiot (Tokyo). 50, 220-228 https://doi.org/10.7164/antibiotics.50.220
  11. Kajimura, Y., M. Sugiyama, and M. Kaneda. 1995. Bacillopeptins, new cyclic lipopeptide antibiotics from Bacillus Subtilis RF-2. J. Antibiot (Tokyo). 48, 1095-1103 https://doi.org/10.7164/antibiotics.48.1095
  12. Katz, E. and A. L. Demain. 1977. The peptide antibiotics of Bacillus: chemistry, biogenesis, and possible functions. Bacteriol. Rev. 41, 449-474
  13. Kim, H. Y. and T. S. Lee. 2009. Isolation of antifungal substances by Bacillus amyloliquefaciens IUB158-03 and antagonistic activity against pathogenic fungi. Kor. J. Mycol. 37, 96-103 https://doi.org/10.4489/KJM.2009.37.1.096
  14. Kim, S. H., B. C. Hyun, J. W. Suh, C. O. Kim, C. S. Yon, D. K. Lee, K. P. Kim, J. K. Jung, Y. H. Lim, and C. H. Lee. 1993. Taxonomy, purification and physicochemical properties of novel antifungal antibiotics AF-011A. Kor. J. Appl. Microbiol. Biotechnol. 21, 556-563
  15. Kim, S. U., J. W. Lee, S. H. Lee, and S. H. Bok. 1991. Identification of bacteria having antifungal activity isolated from soils and its biological activity. Kor. J. Appl. Microbiol. Biotechnol. 19, 337-342
  16. Konz, D., S. Doekel, and M. A. Marahiel. 1999. Molecular and biochemical characterization of the protein template controlling biosynthesis of the lipopeptide lichenysin. J. Bacteriol. 181, 133-140
  17. Kuhnt, M., F. Bitsch, M. Ponelle, J. J. Sanglier, Y. Wang, and B. Wolff. 1998. Microbial conversion products of leptomycin B. Appl. Environ. Microbiol. 64, 714-720
  18. Kuthubutheend, A. J. and G. J. F. Pugh. 1983. The effects of fungicides on soil fungal populations. Soil BioI. Biochem. 11, 297-303 https://doi.org/10.1016/0038-0717(79)90075-0
  19. Larsen, S. H., D. M. Berry, J. W. PaschaL and J. M. Gilliam. 1989. 5-Hydroxy methyl blasticidin Sand blasticidin S from Streptomyces setonii culture A83094. J. Antibiotics. 42, 470-471 https://doi.org/10.7164/antibiotics.42.470
  20. Mhammadi, A., F. Peypoux, F. Besson, and G. Michel. 1982. Bacillomycin F, a new antibiotic of iturin group: Isolatibiotic Characterization. J. Antibiotics (Tokyo). 35, 306-311 https://doi.org/10.7164/antibiotics.35.306
  21. Mossman, B. T. 1983. In vitro approaches for determining mechanisms of toxicity and carcinogenicity by asbestos in the gastrointestinal and respiratory tracts. Environ. Health Perspect 53, 155-161 https://doi.org/10.2307/3429628
  22. Peypoux, F., F. Besson, and G. Michel. 1980. Characterization of a new antibiotic of iturin group: Bacillomycin D. J. Antibiotics 33, 1146-1149 https://doi.org/10.7164/antibiotics.33.1146
  23. Peypoux, F., M. T. Pommier, B. Das, C. F. Besson, L. Delcambe, and G. Michel. 1984. Sturcture of Bacillomycin D and Bacillomycin L peptidolipid antibiotics from Bacillus subtilis. J. Antibiotics. 37, 1600-1604 https://doi.org/10.7164/antibiotics.37.1600
  24. Price, P. and T. J. McMillan. 1990. Use of the tetrazolium assay in measuring the response of human tumor cells to ionizing radiation. Cancer Res. 150, 1392-1396
  25. Robson, G. D., P. J. Kuhn, and A. P. Trinic. 1988. Effects of validamycin A on the morphology, growth and sporulation of Rhizoctonia cerealis, Fusarium culmorum and other fungi. J. Gen. Microbiol. 134, 3187-3194 https://doi.org/10.1099/00221287-134-12-3187
  26. Syuntaro, H., S. Yoshida, H. Sugie, H. Yada, and Y. Fujii. 2002. Mulberry anthracnose antagonists (iturins) produced by Bacillus amyloliquefaciens RC-2. Phytochemistry 61, 693-698 https://doi.org/10.1016/S0031-9422(02)00365-5
  27. Tendulkar, S. R. and Y. K. Saikumari, V. PateL S. Raghotama, T. K. Munshi, P. Balaram, and B. B. Chattoo. 2007. Isolation, purification and characterization of an antifungal molecule produced by Bacillus licheniformis BC98, and its effect on phytopathogen Magnaporthe grisea. J. Appl. Microbiol. 103, 2331-2339 https://doi.org/10.1111/j.1365-2672.2007.03501.x
  28. Turner, J. T. and P. A. Backman, 1991. Factors relating to peanut yield increases after seed treatment with Bacillus subtilis. Plant Dis. 75, 347-353 https://doi.org/10.1016/0038-0717(93)90038-D
  29. Umezawa, H., Y. Okami, T. Hashimoto, Y. Suhara, M. Hamada, and T. Takeuchi. 1965. A new antibiotic, Kasugamycin. J. Antibiotics. 5, 753-757
  30. William, Q. 1996. 'New Microbial Pesticides for IPM', The IPM Practitioner. 8, 5-10
  31. Yu, G. Y. and J. B. Sihclair. 1997. Purification and identification of an antifungal protein produced by a potential biocontrol Bacillus amyloliquefaciens B94 (Abstracts). J. Phytopathology. 87, 107 https://doi.org/10.1111/j.1439-0434.1976.tb01726.x

Cited by

  1. Efficacy of cell free supernatant from Bacillus subtilis ET-1, an Iturin A producer strain, on biocontrol of green and gray mold vol.134, 2017, https://doi.org/10.1016/j.postharvbio.2017.08.001
  2. Evaluation of the toxicity and pathogenicity of biocontrol agents in murine models, chicken embryos and dermal irritation in rabbits vol.6, pp.2, 2017, https://doi.org/10.1039/C6TX00275G