• Title/Summary/Keyword: Antifungal potential

Search Result 254, Processing Time 0.034 seconds

Antifungal Activity of Bacillus vallismortis 1A against Phytopathogen (식물병원균에 대한 Bacillus vallismortis 1A 균주의 항진균 활성)

  • Lee, Mi-Hye;Kim, Soo-Jin;Lee, Chang-Muk;Jang, Jae-Seon;Chang, Hai-Joong;Park, Min-Seon;Koo, Bon-Sung;Yoon, Sang-Hong;Yeo, Yun-Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.41 no.5
    • /
    • pp.362-368
    • /
    • 2008
  • In order to isolate novel oligotrophic bacteria exhibiting antifungal activities, soils were collected from pepper-cultivated fields of Yeongyang, Jecheon, Nonsan, Eumsong and Goesan area in Korea. From soils in pepper cultivated area, a total of 9,354 strains were isolated as oligotrophic bacteria by the R2A dilution method. Among 9,354 oligotrohic bacteria candidates, 1A strain was selected by screening against Phytophthora capsici causing phytophthora blight of hot pepper in the greenhouse and field. The strain was identified as Bacillus vallismortis based on its 16S rDNA sequence and key characteristics as compared with those of authentic cultures of B. vallismortis(KACC 12149) and B. mojavensis(KACC 12096). The strain showed broad spectrum of antibiotic activity in vitro test, as revealed in its strong inhibitory activity to the genera Phytophthora, Collectotrichum, Botrytis and Fusarium, but not to Rhizoctonia and Magnaporthe. In pot experiments, infection rate of hot pepper in the non-treated pots was about 89%, while it was only 29% in the pots treated with 1A strain. The result indicated B. vallismortis 1A is a potential biocontrol agent for phytophthora blight of hot pepper

Control Efficacy of Ethaboxam on Chinese Cabbage Clubroot Caused by Plasmodiophora brassicae (Ethaboxam의 배추 뿌리혹병 방제효과)

  • Choi, Gyung-Ja;Jang, Kyoung-Soo;Kim, Jin-Cheol;Lim, He-Kyoung;Chun, Sam-Jae;Kim, Dal-Soo;Cho, Kwang-Yun
    • The Korean Journal of Pesticide Science
    • /
    • v.9 no.1
    • /
    • pp.81-87
    • /
    • 2005
  • Ethaboxam[(RS)-N-(a-cyano-2-thenyl)-4-ethyl-2-(ethylamino)-1,3-thiazole-5-carboximide] is a novel fungicide with high level of activity against Oomycetes fungi. The control effects of ethaboxam technical and various ethaboxam formulations were investigated against P. brassicae, the causal agent of clubroot disease in Chinese cabbage. When ethaboxam was applied to infested soil, club formation caused by P. brassicae was strongly inhibited at 8.33 mg/L soil and $EC_{50}$ of ethaboxam was 2.65 mg/L soil. Five ethaboxam formulations [10% suspension concentrate (SC), 15% SC, 2% granule (GR), 5% GR, 25% wettable powder] and mixture formulation of ethaboxam and metalaxyl (3%+1% GR) exhibited good efficacy against the pathogen. 10% SC, 15% SC, and 2% GR formulations of ethaboxam showed better disease controlling efficacy on Chinese cabbage clubroot than the other formulations. The $EC_{50}$ values of 10% SC, 15% SC, and 2% GR formulations of ethaboxam were 3.72 mg AI/L soil, 1.1 mg AI/L soil, and 4.95 mg AI/L soil, respectively. Among them, soil drenching application by 15% SC formulation of ethaboxam exhibited the most in vivo antifungal activity on P. brassicae. These results indicate that ethaboxam has a high potential for the control of clubroot disease.

Toxicity of Silver Nanoparticles and Application of Natural Products on Fabric and Filters as an Alternative (은나노 입자의 독성 메커니즘 및 천연물을 활용한 은나노 대체 항균 소재 연구)

  • Karadeniz, Fatih;Kim, Han Seong
    • Journal of Life Science
    • /
    • v.28 no.7
    • /
    • pp.864-873
    • /
    • 2018
  • There has been increasing attention and research in various nanoparticle applications. Nanoparticles have been used for a variety of purposes in different departments including but not limited to cosmetics, food, machinery, and chemical. A highly sought-after field to use nanoparticles, especially natural or artificial silver nanoparticles (SNPs), is the utilization of their significant antimicrobial properties in daily items such as fabrics, indoor air filters, and, water filtration units where abundant bacterial and fungal growth are inevitable. These applications of SNPs, however, have enabled continuous human exposure and hence paved the way for potential SNP toxicity depending on exposure method and particle size. This potential toxicity has led to researches on safer antimicrobial solutions to be utilized in textile and filtration. In this context, products of natural origin have gained expanding interest due to their eco-friendly, cost-effective, and biologically safe properties along their promising antibacterial and antifungal activities. Natural product-applied fabrics and filters have been shown to be comparable to those that are SNP-treated in terms of ease production, material durability, and antimicrobial efficiency. This article summarizes and assesses the current state of in vitro and in vitro toxicity of SNPs and discusses the potential of natural products as an alternative.

Enhancement of Seed Dehiscence by Seed Treatment with Talaromyces flavus GG01 and GG04 in Ginseng (Panax ginseng)

  • Kim, Min-Jeong;Shim, Chang-Ki;Kim, Yong-Ki;Hong, Sung-Jun;Park, Jong-Ho;Han, Eun-Jung;Kim, Seok-Cheol
    • The Plant Pathology Journal
    • /
    • v.33 no.1
    • /
    • pp.1-8
    • /
    • 2017
  • Seed dehiscence of ginseng (Panax ginseng C. A. Mayer) is affected by moisture, temperature, storage conditions and microbes. Several microbes were isolated from completely dehisced seed coat of ginseng cultivars, Chunpoong and Younpoong at Gumsan, Korea. We investigated the potential of five Talaromyces flavus isolates from the dehiscence of ginseng seed in four traditional stratification facilities. The isolates showed antagonistic activities against fungal plant pathogens, such as Cylindrocarpon destructans, Fusarium oxysporum, Rhizoctonia solani, Sclerotinia nivalis, Botrytis cinerea, and Phytophthora capsici. The dehiscence ratios of ginseng seed increased more than 33% by treatment of T. flavus GG01, GG02, GG04, GG12, and GG23 in comparison to control (28%). Among the treatments, the reformulating treatment of T. flavus isolates GG01 and GG04 showed the highest of stratification ratio of ginseng seed. After 16 weeks, the reformulating treatment of T. flavus isolates GG01 and GG04 significantly enhanced dehiscence of ginseng seed by about 81% compared to the untreated control. The candidate's treatment of T. flavus GG01 and GG04 showed the highest decreasing rate of 93% in seed coat hardness for 112 days in dehiscence period. The results suggested that the pre-inoculation of T. flavus GG01 and GG04 found to be very effective applications in improving dehiscence and germination of ginseng seed.

Identification and toxigenic potential of a Nostoc sp.

  • Nowruzi, Bahareh;Khavari-Nejad, Ramezan-Ali;Sivonen, Karina;Kazemi, Bahram;Najafi, Farzaneh;Nejadsattari, Taher
    • ALGAE
    • /
    • v.27 no.4
    • /
    • pp.303-313
    • /
    • 2012
  • Cyanobacteria are well known for their production of a multitude of highly toxic and / or allelopathic compounds. Among the photosynthetic microorganisms, cyanobacteria, belonging to the genus Nostoc are regarded as good candidate for producing biologically active secondary metabolites which are highly toxic to humans and other animals. Since so many reports have been published on the poisoning of different animals from drinking water contaminated with cyanobacteria toxins, it might be assumed that bioactive compounds are found only in aquatic species causes toxicity. However, the discovery of several dead dogs, mice, ducks, and fish around paddy fields, prompted us to study the toxic compounds in a strain of Nostoc which is most abundant in the paddy fields of Iran, using polymerase chain reaction and liquid chromatography coupled with a diode array detector and mass spectrophotometer. Results of molecular analysis demonstrated that the ASN_M strain contains the nosF gene. Also, the result of ion chromatograms and $MS^2$ fragmentation patterns showed that while there were three different peptidic compound classes (anabaenopeptin, cryptophycin, and nostocyclopeptides), there were no signs of the presence of anatoxin-a, homoanatoxin-a, hassallidin or microcystins. Moreover, a remarkable antifungal activity was identified in the methanolic extracts. Based on the results, this study suggests that three diverse groups of potentially bioactive compounds might account for the death of these animals. This case is the first documented incident of toxicity from aquatic cyanobacteria related intoxication in dogs, mice, and aquatic organisms in Iran.

Development of Candida albicans Biofilms Is Diminished by Paeonia lactiflora via Obstruction of Cell Adhesion and Cell Lysis

  • Lee, Heung-Shick;Kim, Younhee
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.3
    • /
    • pp.482-490
    • /
    • 2018
  • Candida albicans infections are often problematic to treat owing to antifungal resistance, as such infections are mostly associated with biofilms. The ability of C. albicans to switch from a budding yeast to filamentous hyphae and to adhere to host cells or various surfaces supports biofilm formation. Previously, the ethanol extract from Paeonia lactiflora was reported to inhibit cell wall synthesis and cause depolarization and permeabilization of the cell membrane in C. albicans. In this study, the P. lactiflora extract was found to significantly reduce the initial stage of C. albicans biofilms from 12 clinical isolates by 38.4%. Thus, to assess the action mechanism, the effect of the P. lactiflora extract on the adhesion of C. albicans cells to polystyrene and germ tube formation was investigated using a microscopic analysis. The density of the adherent cells was diminished following incubation with the P. lactiflora extract in an acidic medium. Additionally, the P. lactiflora-treated C. albicans cells were mostly composed of less virulent pseudohyphae, and ruptured debris was found in the serum-containing medium. A quantitative real-time PCR analysis indicated that P. lactiflora downregulated the expression of C. albicans hypha-specific genes: ALS3 by 65% (p = 0.004), ECE1 by 34.9% (p = 0.001), HWP1 by 29.2% (p = 0.002), and SAP1 by 37.5% (p = 0.001), matching the microscopic analysis of the P. lactiflora action on biofilm formation. Therefore, the current findings demonstrate that the P. lactiflora ethanol extract is effective in inhibiting C. albicans biofilms in vitro, suggesting its therapeutic potential for the treatment of biofilm-associated infections.

Screening of Myxobacteria Inhibiting the Growth of Collectotrichum acutatum Causing Anthracnose on Pepper (고추탄저균 성장 억제 점액세균의 탐색)

  • Chung, Jin-Woo;Lee, Cha-Yul;Yun, Sung-Chul;Cho, Kyung-Yun
    • Microbiology and Biotechnology Letters
    • /
    • v.36 no.1
    • /
    • pp.21-27
    • /
    • 2008
  • As an effort to search new bacterial biocontrol agents against pepper anthracnose, we screened myxobacteria, which might inhibit the growth of Colletotrichum acutatum, the agent of that plant disease. When 93 myxobacterial strains including 59 Myxococcus spp. and 34 Corallococcus spp. were tested against C. acutatum ACYSJ001 on agar plates, 10 strains identified as the genus Myxococcus significantly obstructed the growth of C. acutatum, whereas the majority of strains belonging to the genus Corallococcus did not demonstrate any counteractive effect. Such results have indicated that the strains of the genus Myxococcus have a high potential to play roles of biocontrol agents for control of pepper anthracnose. These also have revealed that the strains of the genus Myxococcus could be used as excellent microbial resources for screening novel antifungal substances.

In Vitro Screening for Antimicrobial Activity of Chitosans and Chitooligosaccharides, Aiming at Potential Uses in Functional Textiles

  • Fernandes, Joao C.;Tavaria, Freni K.;Fonseca, Susana C.;Ramos, Oscar S.;Pintado, Manuela E.;Malcata, F. Xavier
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.2
    • /
    • pp.311-318
    • /
    • 2010
  • Antimicrobial finishing of textiles has been found to be an economical way to prevent (or treat) skin disorders. Hence, this research effort was aimed at elucidating the relationship between the molecular weight (MW) of chitosan and its antimicrobial activity upon six dermal reference microorganisms, as well as the influence of the interactions with cotton fabrics on said activity. Using 3 chitosans with different MWs, as well as two chitooligosaccharide (COS) mixtures, a relevant antimicrobial effect was observed by 24 h for the six microorganisms tested; it was apparent that the antimicrobial effect is strongly dependent on the type of target microorganism and on the MW of chitosan - being higher for lower MW in the case of E. coli, K. pneumoniae, and P. aeruginosa, and the reverse in the case of both Gram-positive bacteria. Furthermore, a strong antifungal effect was detectable upon C. albicans, resembling the action over Gram-positive bacteria. Interactions with cotton fabric resulted in a loss of COS activity when compared with cultured media, relative to the effect over Gram-negative bacteria. However, no significant differences for the efficacy of all the 5 compounds were observed by 4 h. The three chitosans possessed a higher antimicrobial activity when impregnated onto the fabric, and presented a similar effect on both Gram-positive bacteria and yeast, in either matrix. Pseudomonas aeruginosa showed to be the most resistant microorganism to all five compounds.

Application of Rhizobacteria for Plant Growth Promotion Effect and Biocontrol of Anthracnose Caused by Colletotrichum acutatum on Pepper

  • Lamsal, Kabir;Kim, Sang Woo;Kim, Yun Seok;Lee, Youn Su
    • Mycobiology
    • /
    • v.40 no.4
    • /
    • pp.244-251
    • /
    • 2012
  • In vitro and greenhouse screening of seven rhizobacterial isolates, AB05, AB10, AB11, AB12, AB14, AB15 and AB17, was conducted to investigate the plant growth promoting activities and inhibition against anthracnose caused by Colletotrichum acutatum in pepper. According to identification based on 16S rDNA sequencing, the majority of the isolates are members of Bacillus and a single isolate belongs to the genus Paenibacillus. All seven bacterial isolates were capable of inhibiting C. acutatum to various degrees. The results primarily showed that antibiotic substances produced by the selected bacteria were effective and resulted in strong antifungal activity against the fungi. However, isolate AB15 was the most effective bacterial strain, with the potential to suppress more than 50% mycelial growth of C. acutatum in vitro. Moreover, antibiotics from Paenibacillus polymyxa (AB15) and volatile compounds from Bacillus subtilis (AB14) exerted efficient antagonistic activity against the pathogens in a dual culture assay. In vivo suppression activity of selected bacteria was also analyzed in a greenhouse with the reference to their prominent in vitro antagonism efficacy. Induced systemic resistance in pepper against C. acutatum was also observed under greenhouse conditions. Where, isolate AB15 was found to be the most effective bacterial strain at suppressing pepper anthracnose under greenhouse conditions. Moreover, four isolates, AB10, AB12, AB15, and AB17, were identified as the most effective growth promoting bacteria under greenhouse conditions, with AB17 inducing the greatest enhancement of pepper growth.

Anti-inflammatory and Antimicrobial activities of Petroleum ether and Ethanol extracts of Scutia myrtina (Rhamnaceae)

  • Kritheka, N;Kumar, R Sambath;Kumar, S Suresh;Murthy, N Venkateswara;Sundram, R Shanmuga;Perumal, P
    • Advances in Traditional Medicine
    • /
    • v.8 no.4
    • /
    • pp.400-407
    • /
    • 2008
  • The aim of the present study is to investigate the anti-inflammatory and antimicrobial activity of petroleum ether and ethanol extracts of Scutia myrtina (Family: Rhamnaceae). In anti-inflammatory activity carrageenan and histamine induced paw oedema and cotton pellet induced granuloma for acute and chronic inflammatory models were studied in Wister albino rats. Based on the results of the present study it can be concluded that petroleum ether and ethanol extract of Scutia myrtina at 400 mg/kg has potential anti-inflammatory effect and they act in a dose dependent manner. Both extracts of Scutia myrtina showed antimicrobial activity against all bacterial and fungal strains tested at the concentration of $100\;{\mu}g$/ml. From the result, it can be concluded that the Scutia myrtina contain antibacterial and antifungal principle. Further more, besides the confirmation of the popular use; the obtained results demonstrate this herbal drug to represent a new source of antimicrobial and anti-inflammatory agent.