DOI QR코드

DOI QR Code

Toxicity of Silver Nanoparticles and Application of Natural Products on Fabric and Filters as an Alternative

은나노 입자의 독성 메커니즘 및 천연물을 활용한 은나노 대체 항균 소재 연구

  • Karadeniz, Fatih (Department of Organic Material Science and Engineering, Pusan National University) ;
  • Kim, Han Seong (Department of Organic Material Science and Engineering, Pusan National University)
  • Received : 2018.06.19
  • Accepted : 2018.07.23
  • Published : 2018.07.30

Abstract

There has been increasing attention and research in various nanoparticle applications. Nanoparticles have been used for a variety of purposes in different departments including but not limited to cosmetics, food, machinery, and chemical. A highly sought-after field to use nanoparticles, especially natural or artificial silver nanoparticles (SNPs), is the utilization of their significant antimicrobial properties in daily items such as fabrics, indoor air filters, and, water filtration units where abundant bacterial and fungal growth are inevitable. These applications of SNPs, however, have enabled continuous human exposure and hence paved the way for potential SNP toxicity depending on exposure method and particle size. This potential toxicity has led to researches on safer antimicrobial solutions to be utilized in textile and filtration. In this context, products of natural origin have gained expanding interest due to their eco-friendly, cost-effective, and biologically safe properties along their promising antibacterial and antifungal activities. Natural product-applied fabrics and filters have been shown to be comparable to those that are SNP-treated in terms of ease production, material durability, and antimicrobial efficiency. This article summarizes and assesses the current state of in vitro and in vitro toxicity of SNPs and discusses the potential of natural products as an alternative.

나노 입자는 화장품, 식품, 기계, 화학 산업 등에 다양한 용도로 활용되고 있으며, 그 응용분야가 광범히 하여 나노 입자 사용에 대한 관심과 연구가 지속적으로 증가하고 있는 추세이다. 특히 금속나노 입자 중 하나인 은나노 입자는 항균 및 항진균 효과가 뛰어나 의류, 실내 공기필터, 증류필터 등 다양한 방면에 활용되고 있다. 하지만 은나노 입자의 지속적인 노출 시, 입자 크기와 노출방식에 따라 인체에 독성을 유발하는 것으로 알려져 있어 친환경적이고 생물학적으로 안전한 천연물 유래 소재를 활용한 은나노 입자의 기술개발이 필요하다. 천연물이 적용된 실내필터와 의류는 생산의 용이성, 제품 내구성 및 항균 활성에서 은나노 적용제품과 비교될 수 있는 것으로 나타고 있다. 본 연구에서는 은나노의 생체 내 미치는 독성 메커니즘에 대해 알아보고 은나노의 대안으로 항균 활성을 지닌 천연물의 항균 활성에 대해 기술하고자 한다.

Keywords

References

  1. Ahamed, M., Karns, M., Goodson, M., Rowe, J., Hussain, S. M., Schlager, J. J. and Hong, Y. 2008. DNA damage response to different surface chemistry of silver nanoparticles in mammalian cells. Toxicol. Appl. Pharmacol. 233, 404-410. https://doi.org/10.1016/j.taap.2008.09.015
  2. Ahearn, D. G. 1997. Fungal colonization of air filters and insulation in a multi-story office building: Production of volatile organics. Curr. Microbiol. 35, 305-308. https://doi.org/10.1007/s002849900259
  3. Ali, S. W., Purwar, R., Joshi, M. and Rajendran, S. 2014. Antibacterial properties of Aloe vera gel-finished cotton fabric. Cellulose 21, 2063-2072. https://doi.org/10.1007/s10570-014-0175-9
  4. Ao, C. H. and Lee, S. C. 2005. Indoor air purification by photocatalyst $TiO_2$ immobilized on an activated carbon filter installed in an air cleaner. Chem. Eng. Sci. 60, 103-109. https://doi.org/10.1016/j.ces.2004.01.073
  5. Bernstein, J. A., Alexis, N., Bacchus, H., Bernstein, I. L., Fritz, P., Horner, E., Li, N., Mason, S., Nel, A., Oullette, J., Reijula, K., Reponen, T., Seltzer, J., Smith, A. and Tarlo, S. M. 2008. The health effects of nonindustrial indoor air pollution. J. Allergy Clin. Immunol. 121, 585-591. https://doi.org/10.1016/j.jaci.2007.10.045
  6. Braydich-Stolle, L., Hussain, S., Schlager, J. J. and Hofmann, M. C. 2005. In vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicol. Sci. 88, 412-419. https://doi.org/10.1093/toxsci/kfi256
  7. Cha, K., Hong, H. W., Choi, Y. G., Lee, M. J., Park, J. H., Chae, H. K., Ryu, G. and Myung, H. 2008. Comparison of acute responses of mice livers to short-term exposure to nano-sized or micro-sized silver particles. Biotechnol. Lett. 30, 1893-1899. https://doi.org/10.1007/s10529-008-9786-2
  8. Christen, V. and Fent, K. 2012. Silica nanoparticles and silver-doped silica nanoparticles induce endoplasmatic reticulum stress response and alter cytochrome P4501A activity. Chemosphere 87, 423-434. https://doi.org/10.1016/j.chemosphere.2011.12.046
  9. Daisey, J. M., Angell, W. J. and Apte, M. G. 2003. Indoor air quality, ventilation and health symptoms in schools: an analysis of existing information. Indoor Air 13, 53-64. https://doi.org/10.1034/j.1600-0668.2003.00153.x
  10. Duran, N., Marcato, P. D., De Souza, G. I. H., Alves, O. L. and Esposito, E. 2007. Antibacterial effect of silver nanoparticles produced by fungal process on textile fabrics and their effluent treatment. J. Biomed. Nanotechnol. 3, 203-208. https://doi.org/10.1166/jbn.2007.022
  11. El-Shishtawy, R. M., Asiri, A. M., Abdelwahed, N. A. M. and Al-Otaibi, M. M. 2011. In situ production of silver nanoparticle on cotton fabric and its antimicrobial evaluation. Cellulose 18, 75-82. https://doi.org/10.1007/s10570-010-9455-1
  12. Ferrero, F., Periolatto, M., Vineis, C. and Varesano, A. 2014. Chitosan coated cotton gauze for antibacterial water filtration. Carbohydr. Polym. 103, 207-212. https://doi.org/10.1016/j.carbpol.2013.12.037
  13. Filipak Neto, F., Cardoso da Silva, L., Liebel, S., Voigt, C. L. and Oliveira Ribeiro, C. A. 2018. Responses of human hepatoma HepG2 cells to silver nanoparticles and polycyclic aromatic hydrocarbons. Toxicol. Mech. Methods 28, 69-78. https://doi.org/10.1080/15376516.2017.1357778
  14. Foarde, K. K., Hanley, J. T. and Veeck, A. C. 2000. Efficacy of antimicrobial filter treatments. ASHRAE J. 42, 52-58.
  15. Greulich, C., Kittler, S., Epple, M., Muhr, G. and Köller, M. 2009. Studies on the biocompatibility and the interaction of silver nanoparticles with human mesenchymal stem cells (hMSCs). Langenbeck's Arch. Surg. 394, 495-502. https://doi.org/10.1007/s00423-009-0472-1
  16. Gao, Y. and Cranston, R. 2008. Recent advances in antimicrobial treatments of textiles. Text. Res. J. 78, 60-72. https://doi.org/10.1177/0040517507082332
  17. Guo, D., Zhao, Y., Zhang, Y., Wang, Q., Huang, Z., Ding, Q., Guo, Z., Zhou, X., Zhu, L. and Gu, N. 2014. The cellular uptake and cytotoxic effect of silver nanoparticles on chronic myeloid leukemia cells. J. Biomed. Nanotechnol. 10, 669-678. https://doi.org/10.1166/jbn.2014.1625
  18. Gupta, D. and Haile, A. 2007. Multifunctional properties of cotton fabric treated with chitosan and carboxymethyl chitosan. Carbohydr. Polym. 69, 164-171. https://doi.org/10.1016/j.carbpol.2006.09.023
  19. Gupta, D. and Laha, A. 2007. Antimicrobial activity of cotton fabric treated with Quercus infectoria extract. Indian J. Fibre Text. Res. 32, 88-92.
  20. Han, B. 2015. Investigation of antimicrobial activity of grapefruit seed extract and its application to air filters with comparison to propolis and shiitake. Aerosol Air Qual. Res. 2015, 1035-1044.
  21. Han, S. and Yang, Y. 2005. Antimicrobial activity of wool fabric treated with curcumin. Dye. Pigment. 64, 157-161. https://doi.org/10.1016/j.dyepig.2004.05.008
  22. Hsin, Y. H., Chen, C. F., Huang, S., Shih, T. S., Lai, P. S. and Chueh, P. J. 2008. The apoptotic effect of nanosilver is mediated by a ROS- and JNK-dependent mechanism involving the mitochondrial pathway in NIH3T3 cells. Toxicol. Lett. 179, 130-139. https://doi.org/10.1016/j.toxlet.2008.04.015
  23. Hussain, S. M., Hess, K. L., Gearhart, J. M., Geiss, K. T. and Schlager, J. J. 2005. In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol. Vitr. 19, 975-983. https://doi.org/10.1016/j.tiv.2005.06.034
  24. Hwang, G. B., Heo, K. J., Yun, J. H., Lee, J. E., Lee, H. J., Nho, C. W., Bae, G. N. and Jung, J. H. 2015. Antimicrobial air filters using natural Euscaphis japonica nanoparticles. PLoS One 10, e0126481. https://doi.org/10.1371/journal.pone.0126481
  25. Hwang, G. B., Sim, K. M., Bae, G. N. and Jung, J. H. 2015. Synthesis of hybrid carbon nanotube structures coated with Sophora flavescens nanoparticles and their application to antimicrobial air filtration. J. Aerosol Sci. 86, 44-54. https://doi.org/10.1016/j.jaerosci.2015.04.004
  26. Hyun, J., Lee, B., Ryu, H., Sung, J., Chung, K. and Yu, I. 2008. Effects of repeated silver nanoparticles exposure on the histological structure and mucins of nasal respiratory mucosa in rats. Toxicol. Lett. 182, 24-28. https://doi.org/10.1016/j.toxlet.2008.08.003
  27. Jain, P. and Pradeep, T. 2005. Potential of silver nanoparticle-coated polyurethane foam as an antibacterial water filter. Biotechnol. Bioeng. 90, 59-63. https://doi.org/10.1002/bit.20368
  28. Javid, A., Raza, Z. A., Hussain, T. and Rehman, A. 2014. Chitosan microencapsulation of various essential oils to enhance the functional properties of cotton fabric. J. Microencapsul. 31, 461-468. https://doi.org/10.3109/02652048.2013.879927
  29. Jones, A. P. 1999. Indoor air quality and health. Atmos. Environ. 33, 4535-4564. https://doi.org/10.1016/S1352-2310(99)00272-1
  30. Jung, J. H., Hwang, G. B., Park, S. Y., Lee, J. E., Nho, C. W., Lee, B. U. and Bae, G. N. 2011. Antimicrobial air filtration using airborne Sophora Flavescens natural-product nanoparticles. Aerosol Sci. Technol. 45, 1510-1518. https://doi.org/10.1080/02786826.2011.602763
  31. Kawata, K., Osawa, M. and Okabe, S. 2009. In vitro toxicity of silver nanoparticles at noncytotoxic doses to HepG2 human hepatoma cells. Environ. Sci. Technol. 43, 6046-6051. https://doi.org/10.1021/es900754q
  32. Kim, J. S., Kuk, E., Yu, K. N., Kim, J. H., Park, S. J., Lee, H. J., Kim, S. H., Park, Y. K., Park, Y. H., Hwang, C. Y., Kim, Y. K., Lee, Y. S., Jeong, D. H. and Cho, M. H. 2007. Antimicrobial effects of silver nanoparticles. Nanomed. Nanotechnol. Biol. Med. 3, 95-101. https://doi.org/10.1016/j.nano.2006.12.001
  33. Kim, Y. S., Kim, J. S., Cho, H. S., Rha, D. S., Kim, J. M., Park, J. D., Choi, B. S., Lim, R., Chang, H. K., Chung, Y. H., Kwon, I. H., Jeong, J., Han, B. S. and Yu, I. J. 2008. Twenty-eight-day oral toxicity, genotoxicity, and gender-related tissue distribution of silver nanoparticles in SpragueDawley rats. Inhal. Toxicol. 20, 575-583. https://doi.org/10.1080/08958370701874663
  34. Kokura, S., Handa, O., Takagi, T., Ishikawa, T., Naito, Y. and Yoshikawa, T. 2010. Silver nanoparticles as a safe preservative for use in cosmetics. Nanomed. Nanotechnol. Biol. Med. 6, 570-574. https://doi.org/10.1016/j.nano.2009.12.002
  35. Kulthong, K., Maniratanachote, R., Kobayashi, Y., Fukami, T. and Yokoi, T. 2012. Effects of silver nanoparticles on rat hepatic cytochrome P450 enzyme activity. Xenobiotica 42, 854-862. https://doi.org/10.3109/00498254.2012.670312
  36. Kulthong, K., Srisung, S., Boonpavanitchakul, K., Kangwansupamonkon, W. and Maniratanachote, R. 2010. Determination of silver nanoparticle release from antibacterial fabrics into artificial sweat. Part. Fibre Toxicol. 7, 8. https://doi.org/10.1186/1743-8977-7-8
  37. Lam, P. K., Chan, E. S. Y., Ho, W. S. and Liew, C. T. 2004. In vitro cytotoxicity testing of a nanocrystalline silver dressing (Acticoat) on cultured keratinocytes. Br. J. Biomed. Sci. 61, 125-127. https://doi.org/10.1080/09674845.2004.11732656
  38. Lee, H. Y., Choi, Y. J., Jung, E. J., Yin, H. Q., Kwon, J. T., Kim, J. E., Im, H. T., Cho, M. H., Kim, J. H., Kim, H. Y. and Lee, B. H. 2010. Genomics-based screening of differentially expressed genes in the brains of mice exposed to silver nanoparticles via inhalation. J. Nanoparticle Res. 12, 1567-1578. https://doi.org/10.1007/s11051-009-9666-2
  39. Li, A., Liu, Z., Zhu, X., Liu, Y. and Wang, Q. 2010. The effect of air-conditioning parameters and deposition dust on microbial growth in supply air ducts. Energy Build. 42, 449-454. https://doi.org/10.1016/j.enbuild.2009.10.013
  40. Mpenyana-Monyatsi, L., Mthombeni, N. H., Onyango, M. S. and Momba, M. N. B. 2012. Cost-effective filter materials coated with silver nanoparticles for the removal of pathogenic bacteria in groundwater. Int. J. Environ. Res. Public Health 9, 244-271. https://doi.org/10.3390/ijerph9010244
  41. Nadiger, V. G. and Shukla, S. R. 2015. Antimicrobial activity of silk treated with Aloe vera. Fibers Polym. 16, 1012-1019. https://doi.org/10.1007/s12221-015-1012-y
  42. Nam, C. W., Kim, Y. H. and Ko, S. W. 1999. Modification of polyacrylonitrile (PAN) fiber by blending withN-(2-hydroxy)propyl-3-trimethyl- ammonium chitosan chloride. J. Appl. Polym. Sci. 74, 2258-2265. https://doi.org/10.1002/(SICI)1097-4628(19991128)74:9<2258::AID-APP15>3.0.CO;2-9
  43. Noris, F., Siegel, J. A. and Kinney, K. A. 2011. Evaluation of HVAC filters as a sampling mechanism for indoor microbial communities. Atmos. Environ. 45, 338-346. https://doi.org/10.1016/j.atmosenv.2010.10.017
  44. Ozyildiz, F., Karagonlu, S., Basal, G., Uzel, A. and Bayraktar, O. 2013. Micro-encapsulation of ozonated red pepper seed oil with antimicrobial activity and application to nonwoven fabric. Lett. Appl. Microbiol. 56, 168-179. https://doi.org/10.1111/lam.12028
  45. Paddle-Ledinek, J. E., Nasa, Z. and Cleland, H. J. 2006. Effect of different wound dressings on cell viability and proliferation. Plast. Reconstr. Surg. 117, 110S-120S. https://doi.org/10.1097/01.prs.0000225439.39352.ce
  46. Pasquarella, C., Sansebastiano, G. E., Ferretti, S., Saccani, E., Fanti, M., Moscato, U., Giannetti, G., Fornia, S., Cortellini, P., Vitali, P. and Signorelli, C. 2007. A mobile laminar airflow unit to reduce air bacterial contamination at surgical area in a conventionally ventilated operating theatre. J. Hosp. Infect. 66, 313-319. https://doi.org/10.1016/j.jhin.2007.05.022
  47. Purwar, R. and Joshi, M. 2004. Recent developments in antimicrobial finishing of textiles - A review. AATCC Rev. 4, 22-26.
  48. Rahman, M. F., Wang, J., Patterson, T. A., Saini, U. T., Robinson, B. L., Newport, G. D., Murdock, R. C., Schlager, J. J., Hussain, S. M. and Ali, S. F. 2009. Expression of genes related to oxidative stress in the mouse brain after exposure to silver-25 nanoparticles. Toxicol. Lett. 187, 15-21. https://doi.org/10.1016/j.toxlet.2009.01.020
  49. Rai, M., Yadav, A. and Gade, A. 2009. Silver nanoparticles as a new generation of antimicrobials. Biotechnol. Adv. 27, 76-83. https://doi.org/10.1016/j.biotechadv.2008.09.002
  50. Samberg, M. E., Oldenburg, S. J. and Monteiro-Riviere, N. A. 2010. Evaluation of silver nanoparticle toxicity in skin in vitro and keratinocytes in vitro. Environ. Health Perspect. 118, 407-413. https://doi.org/10.1289/ehp.0901398
  51. Sarkar, R. K., Purushottam, D. and Chauhan, P. D. 2003. Bacteria-resist finish on cotton fabrics using natural herbal extracts. Indian J. Fibre Text. Res. 28, 322-328.
  52. Shin, Y., Yoo, D. I. and Min, K. 1999. Antimicrobial finishing of polypropylene nonwoven fabric by treatment with chitosan oligomer. J. Appl. Polym. Sci. 74, 2911. https://doi.org/10.1002/(SICI)1097-4628(19991213)74:12<2911::AID-APP16>3.0.CO;2-2
  53. Sim, K. M., Kim, K. H., Hwang, G. B., Seo, S., Bae, G. N. and Jung, J. H. 2014. Development and evaluation of antimicrobial activated carbon fiber filters using Sophora flavescens nanoparticles. Sci. Total Environ. 493, 291-297. https://doi.org/10.1016/j.scitotenv.2014.06.002
  54. Singh, R., Jain, A., Panwar, S., Gupta, D. and Khare, S. K. 2005. Antimicrobial activity of some natural dyes. Dye. Pigment. 66, 99-102. https://doi.org/10.1016/j.dyepig.2004.09.005
  55. Soto, K., Garza, K. M. and Murr, L. E. 2007. Cytotoxic effects of aggregated nanomaterials. Acta Biomater. 3, 351-358. https://doi.org/10.1016/j.actbio.2006.11.004
  56. Su, W. 1996. Indoor air pollution. Resour. Conserv. Recycl. 16, 77-91. https://doi.org/10.1016/0921-3449(95)00048-8
  57. Sung, J. H., Ji, J. H., Yoon, J. U., Kim, D. S., Song, M. Y., Jeong, J., Han, B. S., Han, J. H., Chung, Y. H., Kim, J., Kim, T. S., Chang, H. K., Lee, E. J., Lee, J. H. and Yu, I. J. 2008. Lung function changes in Sprague-Dawley rats after prolonged inhalation exposure to silver nanoparticles. Inhal. Toxicol. 20, 567-574. https://doi.org/10.1080/08958370701874671
  58. Takenaka, S., Karg, E., Roth, C., Schulz, H., Ziesenis, A., Heinzmann, U., Schramel, P. and Heyder, J. 2001. Pulmonary and systemic distribution of inhaled ultrafine silver particles in rats. Environ. Health Perspect. 109, 547-551.
  59. Verdenelli, M. C., Cecchini, C., Orpianesi, C., Dadea, G. M. and Cresci, A. 2003. Efficacy of antimicrobial filter treatments on microbial colonization of air panel filters. J. Appl. Microbiol. 94, 9-15. https://doi.org/10.1046/j.1365-2672.2003.01820.x
  60. Walentowska, J. and Foksowicz-Flaczyk, J. 2013. Thyme essential oil for antimicrobial protection of natural textiles. Int. Biodeterior. Biodegradation 84, 407-411. https://doi.org/10.1016/j.ibiod.2012.06.028
  61. Wisser, D., Wisser, F. M., Raschke, S., Klein, N., Leistner, M., Grothe, J., Brunner, E. and Kaskel, S. 2015. Biological chitin-MOF composites with hierarchical pore systems for air-filtration applications. Angew. Chemie Int. Ed. Engl. 54, 12588- 12591. https://doi.org/10.1002/anie.201504572
  62. Woo, C. G., Kang, J. S., Kim, H. J., Kim, Y. J. and Han, B. 2015. Treatment of air filters using the antimicrobial natural products propolis and grapefruit seed extract for deactivation of bioaerosols. Aerosol Sci. Technol. 49, 611-619. https://doi.org/10.1080/02786826.2015.1054983
  63. Wu, P. C., Li, Y. Y., Chiang, C. M., Huang, C. Y., Lee, C. C., Li, F. C. and Su, H. J. 2005. Changing microbial concentrations are associated with ventilation performance in Taiwan's air-conditioned office buildings. Indoor Air 15, 19-26. https://doi.org/10.1111/j.1600-0668.2004.00313.x
  64. Xu, Y., Raja, S., Ferro, A. R., Jaques, P. A., Hopke, P. K., Gressani, C. and Wetzel, L. E. 2010. Effectiveness of heating, ventilation and air conditioning system with HEPA filter unit on indoor air quality and asthmatic children's health. Build. Environ. 45, 330-337. https://doi.org/10.1016/j.buildenv.2009.06.010
  65. Yu, B. F., Hu, Z. B., Liu, M., Yang, H. L., Kong, Q. X. and Liu, Y. H. 2009. Review of research on air-conditioning systems and indoor air quality control for human health. Int. J. Refrig. 32, 3-20. https://doi.org/10.1016/j.ijrefrig.2008.05.004