DOI QR코드

DOI QR Code

Enhancement of Seed Dehiscence by Seed Treatment with Talaromyces flavus GG01 and GG04 in Ginseng (Panax ginseng)

  • Kim, Min-Jeong (Organic Agriculture Division, National Institute of Agricultural Sciences, Rural Development of Administration) ;
  • Shim, Chang-Ki (Organic Agriculture Division, National Institute of Agricultural Sciences, Rural Development of Administration) ;
  • Kim, Yong-Ki (Organic Agriculture Division, National Institute of Agricultural Sciences, Rural Development of Administration) ;
  • Hong, Sung-Jun (Organic Agriculture Division, National Institute of Agricultural Sciences, Rural Development of Administration) ;
  • Park, Jong-Ho (Organic Agriculture Division, National Institute of Agricultural Sciences, Rural Development of Administration) ;
  • Han, Eun-Jung (Organic Agriculture Division, National Institute of Agricultural Sciences, Rural Development of Administration) ;
  • Kim, Seok-Cheol (Organic Agriculture Division, National Institute of Agricultural Sciences, Rural Development of Administration)
  • Received : 2016.06.18
  • Accepted : 2016.08.30
  • Published : 2017.02.01

Abstract

Seed dehiscence of ginseng (Panax ginseng C. A. Mayer) is affected by moisture, temperature, storage conditions and microbes. Several microbes were isolated from completely dehisced seed coat of ginseng cultivars, Chunpoong and Younpoong at Gumsan, Korea. We investigated the potential of five Talaromyces flavus isolates from the dehiscence of ginseng seed in four traditional stratification facilities. The isolates showed antagonistic activities against fungal plant pathogens, such as Cylindrocarpon destructans, Fusarium oxysporum, Rhizoctonia solani, Sclerotinia nivalis, Botrytis cinerea, and Phytophthora capsici. The dehiscence ratios of ginseng seed increased more than 33% by treatment of T. flavus GG01, GG02, GG04, GG12, and GG23 in comparison to control (28%). Among the treatments, the reformulating treatment of T. flavus isolates GG01 and GG04 showed the highest of stratification ratio of ginseng seed. After 16 weeks, the reformulating treatment of T. flavus isolates GG01 and GG04 significantly enhanced dehiscence of ginseng seed by about 81% compared to the untreated control. The candidate's treatment of T. flavus GG01 and GG04 showed the highest decreasing rate of 93% in seed coat hardness for 112 days in dehiscence period. The results suggested that the pre-inoculation of T. flavus GG01 and GG04 found to be very effective applications in improving dehiscence and germination of ginseng seed.

Keywords

References

  1. Baskin, J. M. and Baskin, C. C. 2004. A classification system for seed dormancy. Seed Sci. Res. 14:1-16.
  2. Chet, I. and Baker, R. 1981. Isolation and biocontrol potential of Thrichoderma hamatum from soil naturally suppressive to Rhizoctonia solani. Phytopathology 71:286-290. https://doi.org/10.1094/Phyto-71-286
  3. Conrath, U., Beckers, G. J., Flors, V., Garcia-Agustin, P., Jakab, G., Mauch, F., Newman, M. A., Pieterse, C. M., Poinssot, B., Pozo, M. J., Pugin, A., Schaffrath, U., Ton, J., Wendehenne, D., Zimmerli, L. and Mauch-Mani, B.; Prime-A-Plant Group. 2006. Priming: getting ready for battle. Mol. Plant-Microbe Interact. 19:1062-1071. https://doi.org/10.1094/MPMI-19-1062
  4. Crotti, L. B., Jabor, V. A., Chellegatti, M. A., Fonseca, M. J. and Said, S. 1999. Studies of pectic enzymes produced by Talaromyces flavus in submerged and solid substrate cultures. J. Basic Microbiol. 39:227-235. https://doi.org/10.1002/(SICI)1521-4028(199909)39:4<227::AID-JOBM227>3.0.CO;2-8
  5. Doty, S. L. 2011. Growth-promoting endophytic fungi of forest trees. For. Sci. 80:151-156.
  6. Duo-Chuan, L. I., Chen, S. and Jing, L. U. 2005. Purification and partial characterization of two chitinases from the mycoparasitic fungus Talaromyces flavus. Mycopathologia 159: 223-229. https://doi.org/10.1007/s11046-004-9096-8
  7. Fravel, D. R., Kim, K. K. and Papavizas, G. C. 1987. Viability of microsclerotia of Verticillium dahliae reduced by a metabolite produced by Talaromyces flavus. Phytopathology 77:616-619. https://doi.org/10.1094/Phyto-77-616
  8. Haggag, W. M., Kansoh, A. L. and Aly, A. M. 2006. Proteases from Talaromyces flavus and Trichoderma harzianum: purification characterization and antifungal activity against brown spot disease on faba bean. Plant Pathol. Bull. 15:231-239.
  9. Hu, S. Y. 1977. A contribution to our knowledge of ginseng. Am. J. Chin. Med. (Gard City N. Y.) 5:1-23. https://doi.org/10.1142/S0192415X77000026
  10. Hwang, J. Y., Shim, C. K., Ryu, K. Y., Choi, D. H. and Jee, H. J. 2006. Selection of Brevibacillus brevis B23 and Bacillus stearothermophilus B42 as biological control agents against sclerotinia rot of lettuce. Res. Plant Dis. 12:254-259 (in Korean). https://doi.org/10.5423/RPD.2006.12.3.254
  11. Kim, H. H., Lee, J. H., Shin, D. J., Ko, H. C., Hwang, H. S., Kim, T., Cho, E. G. and Engelmann, F. 2008. Desiccation sensitivity and cryopreservation of Korean ginseng seeds. Cryo Letters 29:419-426.
  12. Kim, K. K., Fravel, D. R. and Papavuzas, G. C. 1988. Identification of a metabolite preduced by Talaromyces flavus as glucose oxidase and its role in the biocontrol of Verticillium dahlie. Phytopatholology 78:488-492. https://doi.org/10.1094/Phyto-78-488
  13. Kim, K. K., Fravel, D. R. and Papavizas, G. C. 1990. Glucose oxidase as the antifungal principle of talaron from Talaromyces flavus. Can. J. Microbiol. 36:760-764. https://doi.org/10.1139/m90-131
  14. Kim, Y. H., Ahn, I. O., Khan, A. L., Kamran, M., Waqas, M., Lee, J. S., Kim, D. H., Jang, S. W. and Lee, I. J. 2014. Regulation of endogenous gibberellins and abscisic acid levels during different seed collection periods in Panax ginseng. Hortic. Environ. Biotechnol. 55:166-174. https://doi.org/10.1007/s13580-014-0146-y
  15. Kwon, W. S., Lee, J. H. and Lee, M. G. 2001. Optimum chilling terms for germination of the dehisced ginseng (Panax ginseng C. A. Meyer) seed. J. Ginseng Res. 25:167-170.
  16. Kwon, W. S., Min, B. H. and Lee, J. M. 1998. Separation of cytokinins in ginseng seeds during after-ripening by HPLC. J. Korean Soc. Hortic. Sci. 38:371-375 (in Korean).
  17. Lee, J. S., Lee, S. S., Lee, J. H. and Ahn, I. O. 2008. Effect of seed size and cultivars on the ratio of seed coat dehiscence and seedling performance in Panax ginseng. J. Ginseng Res. 32:257-263 (in Korean). https://doi.org/10.5142/JGR.2008.32.3.257
  18. Li, T. S. C., Bedford, K. E. and Sholberg, P. L. 2000. Improved germination of American ginseng seeds under controlled environments. HortTechnology 10:131-135.
  19. Li, Y., Ying, Y., Zhao, D. and Ding, W. 2012. Microbial community diversity analysis of Panax ginseng rhizosphere and non-rhizosphere soil using randomly amplified polymorphic DNA method. Open J. Genet. 2:95-102. https://doi.org/10.4236/ojgen.2012.22014
  20. Liu, C. X. and Xiao, P. G. 1992. Recent advances on ginseng research in China. J. Ethnopharmacol. 36:27-38. https://doi.org/10.1016/0378-8741(92)90057-X
  21. Liu, S. Q., Ren, Y. Y. and Xu, H. B. 2011. Effect of thinning flower buds on fruit and seed traits and root yield of Panax ginseng C. A. Meyer. Ind. Crops Prod. 33:559-565. https://doi.org/10.1016/j.indcrop.2010.12.024
  22. Madi, L., Katan, T., Katan, J. and Henis, Y. 1997. Biological control of Sclerotium rolfsii and Verticillium dahliae by Talaromyces flavus is mediated by different mechanisms. Phytopathology 87:1054-1060. https://doi.org/10.1094/PHYTO.1997.87.10.1054
  23. Marois, J. J., Fravel, D. R. and Papavizas, G. C. 1984. Ability of Talaromyces flavus to occupy the rhizosphere and its interaction with Verticillium dahliae. Soil Biol. Biochem. 16:387-390. https://doi.org/10.1016/0038-0717(84)90038-5
  24. Marois, J. J., Johnston, S. A., Dunn, M. T. and Papavizas, G. C. 1982. Biological control of Verticillium wilt of eggplant in the field. Plant Dis. 66:1166-1168. https://doi.org/10.1094/PD-66-1166
  25. McLaren, D. L., Huang, H. C. and Rimmer, S. R. 1982. Hyphal interactions occurring between Sclerotinia sclerotiorum and Penicillium vermiculatum. Can. J. Plant Pathol. 4:308.
  26. McLaren, D. L., Huang, H. C. and Rimmer, S. R. 1986. Hyperparasitism of Sclerotinia sclerotiorum by Talaromyces flavus. Can. J. Plant Pathol. 8:43-48. https://doi.org/10.1080/07060668609501840
  27. Nagtzaam, M. P. M., Bollen, G. J. and Termorshuizen, A. J. 1998. Efficacy of Talaromyces flavus alone or in combination with other antagonists in controlling Verticillium dahliae in growth chamber experiments. J. Phytopathol. 146:165-173. https://doi.org/10.1111/j.1439-0434.1998.tb04674.x
  28. Naraghi, L., Heydari, A., Rezaee, S., Razavi, M. and Afshari-Azad, H. 2010. Biological control of Verticillium wilt of greenhouse cucumber by Talaromyces flavus. Phytopathol. Mediterr. 49:321-329.
  29. Park, Y. H., Kim, Y. C., Park, S. U., Lim, H. S., Kim, J. B., Cho, B. K. and Bae, H. 2012. Age-dependent distribution of fungal endophytes in Panax ginseng roots cultivated in Korea. J. Ginseng Res. 36:327-333. https://doi.org/10.5142/jgr.2012.36.3.327
  30. Peterson, E. A. 1959. Seed-borne fungi in relation to colonization of roots. Can. J. Microbiol. 5:579-582. https://doi.org/10.1139/m59-070
  31. Proctor, J. T. A. and Bailey, W. G. 1987. Ginseng: industry, botany, and culture. Hortic. Rev. 9:187-236.
  32. Proctor, J. T. A. and Louttit, D. 1995. Stratification of American ginseng seed: embryo growth and temperature. Korean J. Ginseng Sci. 19:171-174.
  33. Proctor, J. T. A. and Stechyshyn-Nagasawa, A. 2008. Extended stratification of the North American ginseng seed. J. Ginseng Res. 32:155-160. https://doi.org/10.5142/JGR.2008.32.2.155
  34. Revilla, I. and Vivar-Quintana, A. M. 2008. Effect of canning process on texture of Faba beans (Vicia Faba). Food Chem. 106:310-314. https://doi.org/10.1016/j.foodchem.2007.02.046
  35. Siessere, V. and Said, S. 1989. Pectic enzymes production in solid state fermentation using citrus pulp pellets by Talaromyces flavus, Tubercularia vulgaris and Penicillium charlesi. Biotechnol. Lett. 11:343-344. https://doi.org/10.1007/BF01024515
  36. Son, E. R. and Reuther, G. 1977. Preliminary studies on breaking of dormancy and germination of Panax ginseng seeds. Korean J. Crop Sci. 22:45-51.
  37. Stosz, S. K., Fravel, D. R. and Roberts, D. P. 1996. In vitro analysis of the role of glucose oxidase from Talaromyces flavus in biocontrol of the plant pathogen Verticillium dahliae. Appl. Environ. Microbiol. 62:3183-3186.
  38. Um, Y., Kim, B. R., Jeong, J. J., Chung, C. M. and Lee, Y. 2014. Identification of endophytic bacteria in Panax ginseng seeds and their potential for plant growth promotion. Korean J. Med. Crop Sci. 22:306-312 (in Korean). https://doi.org/10.7783/KJMCS.2014.22.4.306
  39. Warr, S. J., Thompson, K. and Kent, M. 1992. Antifungal activity in seed coat extracts of woodland plants. Oecologia 92: 296-298. https://doi.org/10.1007/BF00317378
  40. Won, J. Y. and Jo, J. S. 1988. Studies on the germination characters of Korean ginseng (Panax ginseng C. A. Meyer) seed. Res. Rep. Agric. Sci. Technol. 15:47-68.
  41. Yang, D. C., Cheon, S. K., Lee, S. S., Yang, D. C. and Kim, H. J. 1982. The effects of various dehiscence materials, growth regulators and fungicides on the of ginseng seed (Panax ginseng C A. Meyer). Korean J. Ginseng Sci. 6:55-66.
  42. Yun, T. K. 2001. Brief introduction of Panax ginseng C.A. Meyer. J. Korean Med. Sci. 16:S3-S5. https://doi.org/10.3346/jkms.2001.16.S.S3

Cited by

  1. Full-Length Transcriptome Survey and Expression Analysis of Cassia obtusifolia to Discover Putative Genes Related to Aurantio-Obtusin Biosynthesis, Seed Formation and Development, and Stress Response vol.19, pp.9, 2018, https://doi.org/10.3390/ijms19092476