• Title/Summary/Keyword: Anti-fungal

Search Result 225, Processing Time 0.021 seconds

Antifungal Activity of Glycycoumarin to Candida albicans (Glycycoumarin 감초성분의 항진균효과)

  • Lee, Jue-Hee;Lee, Young-Mi;Han, Yong-Moon
    • YAKHAK HOEJI
    • /
    • v.55 no.3
    • /
    • pp.234-239
    • /
    • 2011
  • Glycycoumarin, a 3-arylcoumarine isolated from Glycyrrhizae radix (a family of Leguminosae), is reported to have anti-bacterial activity. However, its antifungal activity is still unknown. In this present study, the antifungal activity of glycycoumarin (GLM) against Candida albicans, a polymorphic fungus was investigated. Possible mechanism such as blocking of the hyphal induction was also analyzed. By the in-vitro susceptibility analysis, GLM showed anticandidal activity, resulting in an almost complete inhibition of the fungal growth at a concentration of 320 ${\mu}g/ml$, which was equivalent to the efficacy of fluconazole at the same dose. In the murine model of disseminated candidiasis GLM enhanced resistance of mice against the disseminated disease (P<0.05), resulting in 60% protection of GLM-treated mice group during a period of 21-day observation. As for its mechanism of the antifungal activity, GLM blocked hyphal production, one of the important of virulence factors by the fungus, from the yeast form of C. albicans (P<0.01). These data indicate that GLM may contribute to the perspectives that focus on the development of a novel agent with antifungal activity specific for C. albicans infection.

Synthesis of New 2-Thiouracil-5-Sulphonamide Derivatives with Antibacterial and Antifungal Activity

  • Fathalla O. A.;Awad S. M.;Mohamed M. S.
    • Archives of Pharmacal Research
    • /
    • v.28 no.11
    • /
    • pp.1205-1212
    • /
    • 2005
  • 2-Thiouracil-5-sulphonic acid N-(4-acetylphenyl) Amide (1) was reacted with a series of aromatic aldehydes giving chalcones 2 (Claisen-Schemidt reaction), some of these chalcones were reacted with urea and thiourea giving pyrimidine-2-one and pyrimidine-2 thione derivatives respectively of the type 3a,b and 4a,b. In addition many chalcones were reacted with hydroxylamine hydrochloride giving isoxazoline derivatives 5a,b. They could also reacted with phenylhydrazine to give pyrazoline derivatives 5a,b, chalcones also were reacted withethylcyano acetate and/or malononitryl in pyridine giving pyran derivatives 7a,c and 8a,c. In another pathway chalcones were epoxidised by $H_{2}O_{2}$ giving epoxides 9a,c which in turn were reacted with phenylhydrazine giving 4-hydroxypyrazoline derivatives 10a,c. In another reaction chalcones were reacted with ethylcyanoacetate in presence of amm.acetate giving pyridone derivatives 11a,d which could be prepared also in exellent yield from compound 1 by its reaction with certain aromatic aldehydes and ethylcyanoacetate in presence of ammonium acetate. Finally, compound 1 was reacted with semicarbazide giving semicarbazone intermediate 12 which in turn was reacted with thionyl chloride giving thiadiazole derivative 13. The biological effects of some of the new synthesized compounds were also investigated.

Effect of $18{\beta}$-Glycyrrhetinic Acid on Septic Arthritis Caused by Candida albicans ($18{\beta}$-Glycyrrhetinic Acid의 항 감염성관절염효과)

  • Han, Yong-Moon
    • YAKHAK HOEJI
    • /
    • v.51 no.6
    • /
    • pp.476-481
    • /
    • 2007
  • A polymorphic fungus, Candida albicans, causes various forms of infections such as disseminated candidiasis and vaginitis. Recent reports indicate that the fungus is a main etiological agent for the arthritis. In search of new sources for treatment of the fungal arthritis, we examined $18{\beta}$-glycyrrhetinic acid ($18{\beta}$-GA) against C. albicans-caused septic arthritis. The compound is isolated from Glycyrrhizae Radix that is known to have various immunomodulating activities and is one of the most popular herbal medicines. For induction of animal model of a septic arthritis, mice were given an emulsion form of C. albicans cell wall mixed with Complete Freund's Adjuvant (CFA) via footpad-injection. To determine prophylactic and therapeutic effects, the component was given to the animals before or after the induction of the arthritis, respectively. Data showed that intraperitoneal administration of $18{\beta}$-GA resulted in reduction of the inflammation, indicating the component had both prophylactic and therapeutic activities. For investigation of mechanism of the $18{\beta}$-GA, inhibitory effects on NO (nitiric oxide) and on T-lymphocyte proliferation were determined. Results demonstrated that $18{\beta}$-GA suppressed NO production from LPS (lipopolysaccharide)-treated macrophages and also inhibited proliferation of Con A (concanavalin A)activated T-cells. Taken together, $18{\beta}$-GA, a pentacyclic triterpene, has anti-arthritic activity against C. albicans-caused septic arthritis, possibly by blocking NO production and T-cell suppression.

Improvement of Ergone Production from Mycelial Culture of Polyporus umbellatus

  • Lee, Wi-Young;Park, Young-Ki;Ahn, Jin-Kwon
    • Mycobiology
    • /
    • v.35 no.2
    • /
    • pp.82-86
    • /
    • 2007
  • Ergone, a fungal metabolite derived from ergosterol, was previously isolated and identified from Polyporus umbellatus. Ergone is a major component of P. umbellatus known to have anti-aldosteronic diuretic effect and also displays cytotoxic activities. Most of mushroom's fruit bodies used for test contained less than 10 ${\mu}g/g$ of ergone. But P. umbellatus have larger amount of ergone than any other mushrooms. In order to improve the ergone production from the submerged culture of P. umbellatus, several factors including medium composition, culture conditions (temperature and pH) and different combinations of co-cultivation with various mycelia were studied. Among various carbon sources examined, starch proved to be most effective for the production of mycelia. The optimum pH and temperature for a flask culture of P. umbellatus mycelia were found to be 4.5 and $25^{\circ}C$, respectively. Under the optimized culture conditions, both the ergone production (86.9 ${\mu}g/g$) and mycelial growth (3.5 g/l) increased when P. umbellatus was cultured with Armillariella mellea. When the optimized conditions were applied, both mycelium and ergone production were significantly enhanced.

Interaction of Detonation Nanodiamonds with Hispidin

  • Rhee, Changkyu;Kim, Whungwhoe;Burov, Andrey E.;Puzyr, Alexey P.;Bondar, Vladimir S.
    • Journal of Powder Materials
    • /
    • v.27 no.6
    • /
    • pp.458-463
    • /
    • 2020
  • Hispidin is a secondary metabolite found in numerous medicinal mushrooms that has attracted significant attention, owing to its distinct biological effects, including antioxidant, anti-inflammatory, antitumor, and cytoprotective properties. Experiments are being carried out to study the interaction of detonation nanodiamonds (DNDs) with synthetic and natural hispidin sourced from extracts of Pholiota sp. fungus. The bioluminescence method is used to determine the adsorption/desorption properties of DNDs toward hispidin. It is found that hispidin forms strong conjugates with DNDs, and the use of various eluents does not result in a significant release of the adsorbed hispidin molecules. DND-bovine serum albumin (BSA) complex, where DNDs serve as a carrier for the protein and the latter acts as a hispidin sorbent, has been developed and applied in hispidin adsorption/desorption tests. The results support the use of the DNDs as a carrier for hispidin in medical applications. They also advocate the application of the DND-BSA complex for isolating the substance from fungal extracts.

A Genome-Wide Analysis of Antibiotic Producing Genes in Streptomyces globisporus SP6C4

  • Kim, Da-Ran;Kwak, Youn-Sig
    • The Plant Pathology Journal
    • /
    • v.37 no.4
    • /
    • pp.389-395
    • /
    • 2021
  • Soil is the major source of plant-associated microbes. Several fungal and bacterial species live within plant tissues. Actinomycetes are well known for producing a variety of antibiotics, and they contribute to improving plant health. In our previous report, Streptomyces globisporus SP6C4 colonized plant tissues and was able to move to other tissues from the initially colonized ones. This strain has excellent antifungal and antibacterial activities and provides a suppressive effect upon various plant diseases. Here, we report the genome-wide analysis of antibiotic producing genes in S. globisporus SP6C4. A total of 15 secondary metabolite biosynthetic gene clusters were predicted using antiSMASH. We used the CRISPR/Cas9 mutagenesis system, and each biosynthetic gene was predicted via protein basic local alignment search tool (BLAST) and rapid annotation using subsystems technology (RAST) server. Three gene clusters were shown to exhibit antifungal or antibacterial activity, viz. cluster 16 (lasso peptide), cluster 17 (thiopeptide-lantipeptide), and cluster 20 (lantipeptide). The results of the current study showed that SP6C4 has a variety of antimicrobial activities, and this strain is beneficial in agriculture.

Culture Conditions for Mycelial Growth and Anti-Cancer Properties of Termitomyces

  • Suphachai Tharavecharak;Corina N. D'Alessandro-Gabazza;Masaaki Toda;Taro Yasuma;Taku Tsuyama;Ichiro Kamei;Esteban C. Gabazza
    • Mycobiology
    • /
    • v.51 no.2
    • /
    • pp.94-108
    • /
    • 2023
  • Termitomyces sp. that grow in symbiosis with fungus-farming Termites have medicinal properties. However, they are rare in nature, and their artificial culture is challenging. The expression of AXL receptor tyrosine kinase and immune checkpoint molecules favor the growth of cancer cells. The study evaluated the optimal conditions for the artificial culture of Termitomyces and their inhibitory activity on AXL and immune checkpoint molecules in lung adenocarcinoma and melanoma cell lines. The culture of 45 strains of Termitomyces was compared. Five strains with marked growth rates were selected. Four of the selected strains form a single cluster by sequence analysis. The mycelium of 4 selected strains produces more fungal mass in potato dextrose broth than in a mixed media. The bark was the most appropriate solid substrate for Termitomyces mycelia culture. The mycelium of all five selected strains showed a higher growth rate under normal CO2 conditions. The culture broth, methanol, and ethyl acetate of one selected strain (T-120) inhibited the mRNA relative expression of AXL receptor tyrosine kinase and immune checkpoint molecules in cancer cell lines. Overall, these results suggest the potential usefulness of Termitomyces extracts as a coadjuvant therapy in malignant diseases.

Thymol Ameliorates Aspergillus fumigatus Keratitis by Downregulating the TLR4/ MyD88/ NF-kB/ IL-1β Signal Expression and Reducing Necroptosis and Pyroptosis

  • Limei Wang;Haijing Yan;Xiaomeng Chen;Lin Han;Guibo Liu;Hua Yang;Danli Lu;Wenting Liu;Chengye Che
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.1
    • /
    • pp.43-50
    • /
    • 2023
  • Fungal keratitis is a refractory kind of keratopathy. We attempted to investigate the antiinflammatory role of thymol on Aspergillus fumigatus (A. fumigatus) keratitis. Wound healing and fluorescein staining of the cornea were applied to verify thymol's safety. Mice models of A. fumigatus keratitis underwent subconjunctival injection of thymol. The anti-inflammatory roles of thymol were verified by hematoxylin-eosin (HE) staining, slit lamp observation, quantitative real-time polymerase chain reaction (qRT-PCR), and Western blotting. In contrast with the DMSO group, more transparent corneas and less inflammatory cells infiltration were detected in mice treated with 50 ㎍/ml thymol. Thymol downregulated the synthesis of TLR4, MyD88, NF-kB, IL-1β, NLRP3, caspase 1, caspase 8, GSDMD, RIPK3 and MLKL. In summary, we proved that thymol played a protective part in A. fumigatus keratitis by cutting down inflammatory cells aggregation, downregulating the TLR4/ MyD88/ NF-kB/ IL-1β signal expression and reducing necroptosis and pyroptosis.

Application of bio-preservation to enhance food safety: A review

  • Nethma Samadhi Ranathunga;Kaushalya Nadeeshani Wijayasekara;Edirisinghe Dewage Nalaka Sandun Abeyrathne
    • Food Science and Preservation
    • /
    • v.30 no.2
    • /
    • pp.179-189
    • /
    • 2023
  • Consumers and industry experts frequently have negative perceptions of most chemical preservatives. Although most people concede that they cannot resolve global food waste issues without preservatives, they prefer products without chemical preservatives. Numerous emerging technologies is now surpassing conventional methods for mitigating microbial food deterioration in response to consumer demand and fundamental health and safety considerations, including biological antimicrobial systems such as using food-grade microorganisms and their metabolites primarily originating from microorganisms, plants, and animals. Microbial compounds, including bacteriocins, bacteriophages, and anti-fungal agents, plant extracts such as flavonoids and essential oils; and animal-originated compounds, such as lysozyme, chitosan, and lactoferrin, are considered some of the major bio-preservatives. These natural compounds can be used alone or with other preservatives to improve food safety. Hence, the use of microbes or their metabolic byproducts to extend the shelf life of foods while maintaining safety standards is known as bio-preservation. To manufacture and consume foods in a safe condition, this review primarily aims to broaden knowledge amongst industry professionals and consumers regarding bio-preservation techniques, bio-preservatives, their classifications, and distinctive mechanisms to enhance food safety.

The Protective Mechanism of Zinc in Fungal Metabolite Gliotoxin-induced Apoptosis (진균독소 Gliotoxin에 의한 세포고사에서 Zinc의 예방적 역할)

  • Park, Ji-Sun;So, Hong-Seob;Kim, Myung-Sunny;Jung, Byung-Hak;Choi, Ik-Jun;Jin, Gyung-Ho;Jin, Sung-Ho;Kim, Nam-Song;Cho, Kwang-Ho;Park, Rae-Kil
    • The Journal of the Korean Society for Microbiology
    • /
    • v.34 no.6
    • /
    • pp.501-512
    • /
    • 1999
  • Gliotoxin, a fungal metabolite, is one of the epipolythiodioxopiperazine classes and has a variety of effects including immunomodulatory and apoptotic agents. This study is designed to evaluate the effect of zinc on gliotoxin-induced death of HL-60 cells. Here, we demonstrated that treatment of gliotoxin decreased cell viability in a dose and time-dependent manner. Gliotoxin-induced cell death was confirmed as apoptosis characterized by chromatin margination, fragmentation and ladder-pattern digestion of genomic DNA. Gliotoxin increased the proteolytic activities of caspase 3, 6, 8, and 9. Caspase-3 activation was further confirmed by the degradation of procaspase-3 and PARP in gliotoxin-treated HL-60 cells. Zinc compounds including $ZnCl_2$ and $ZnSO_4$ markedly inhibited gliotoxin-induced apoptosis in HL-60 cells (from 30% to 90%). Consistent with anti-apoptotic effects, zinc also suppressed the enzymatic activities of caspase-3 and -9 proteases. In addition, cleavage of both PARP and procaspase 3 in gliotoxin-treated HL-60 cells was inhibited by the addition of zinc compounds. We further demonstrated that expression of Fas ligand by gliotoxin was suppressed by zinc compounds. These data suggest that zinc may prevent gliotoxin-induced apoptosis via inhibition of Fas ligand expression as well as suppression of caspase family cysteine proteases-3 and -9 in HL-60 cells.

  • PDF