DOI QR코드

DOI QR Code

Culture Conditions for Mycelial Growth and Anti-Cancer Properties of Termitomyces

  • Suphachai Tharavecharak (Graduate School of Agriculture, University of Miyazaki) ;
  • Corina N. D'Alessandro-Gabazza (Department of Immunology, Faculty of Medicine, Graduate School of Medicine, Mie University) ;
  • Masaaki Toda (Department of Immunology, Faculty of Medicine, Graduate School of Medicine, Mie University) ;
  • Taro Yasuma (Department of Immunology, Faculty of Medicine, Graduate School of Medicine, Mie University) ;
  • Taku Tsuyama (Graduate School of Agriculture, University of Miyazaki) ;
  • Ichiro Kamei (Graduate School of Agriculture, University of Miyazaki) ;
  • Esteban C. Gabazza (Department of Immunology, Faculty of Medicine, Graduate School of Medicine, Mie University)
  • Received : 2022.12.05
  • Accepted : 2023.03.02
  • Published : 2023.04.30

Abstract

Termitomyces sp. that grow in symbiosis with fungus-farming Termites have medicinal properties. However, they are rare in nature, and their artificial culture is challenging. The expression of AXL receptor tyrosine kinase and immune checkpoint molecules favor the growth of cancer cells. The study evaluated the optimal conditions for the artificial culture of Termitomyces and their inhibitory activity on AXL and immune checkpoint molecules in lung adenocarcinoma and melanoma cell lines. The culture of 45 strains of Termitomyces was compared. Five strains with marked growth rates were selected. Four of the selected strains form a single cluster by sequence analysis. The mycelium of 4 selected strains produces more fungal mass in potato dextrose broth than in a mixed media. The bark was the most appropriate solid substrate for Termitomyces mycelia culture. The mycelium of all five selected strains showed a higher growth rate under normal CO2 conditions. The culture broth, methanol, and ethyl acetate of one selected strain (T-120) inhibited the mRNA relative expression of AXL receptor tyrosine kinase and immune checkpoint molecules in cancer cell lines. Overall, these results suggest the potential usefulness of Termitomyces extracts as a coadjuvant therapy in malignant diseases.

Keywords

Acknowledgement

The authors want to thank all people who cooperated in the mushroom collection.

References

  1. Liu J, Wang Y, Wu J, et al. Isolation, structural properties, and bioactivities of polysaccharides from mushrooms Termitomyces: a review. J Agric Food Chem. 2022;70(1):21-33. https://doi.org/10.1021/acs.jafc.1c06443
  2. Aanen DK, Eggleton P, Rouland-Lefevre C, et al. The evolution of fungus-growing termites and their mutualistic fungal symbionts. Proc Natl Acad Sci USA. 2002;99(23):14887-14892. https://doi.org/10.1073/pnas.222313099
  3. Chouvenc T, Sobotnik J, Engel MS, et al. Termite evolution: mutualistic associations, key innovations, and the rise of termitidae. Cell Mol Life Sci. 2021;78(6):2749-2769. https://doi.org/10.1007/s00018-020-03728-z
  4. da Costa RR, Hu H, Li H, et al. Symbiotic plant biomass decomposition in fungus-growing termites. Insects. 2019;10(4):87.
  5. Froslev TG, Aanen DK, Laessoe T, et al. Phylogenetic relationships of Termitomyces and related taxa. Mycol Res. 2003;107(Pt 11):1277-1286. https://doi.org/10.1017/S0953756203008670
  6. Ferreira IC, Barros L, Abreu RM. Antioxidants in wild mushrooms. Curr Med Chem. 2009;16(12):1543-1560. https://doi.org/10.2174/092986709787909587
  7. Ferreira IC, Vaz JA, Vasconcelos MH, et al. Compounds from wild mushrooms with antitumor potential. Anticancer Agents Med Chem. 2010;10(5):424-436. https://doi.org/10.2174/1871520611009050424
  8. Nakalembe I, Kabasa JD, Olila D. Comparative nutrient composition of selected wild edible mushrooms from two agro-ecological zones, Uganda. Springerplus. 2015;4:433.
  9. Johjima T, Taprab Y, Noparatnaraporn N, et al. Large-scale identification of transcripts expressed in a symbiotic fungus (Termitomyces) during plant biomass degradation. Appl Microbiol Biotechnol. 2006;73(1):195-203. https://doi.org/10.1007/s00253-006-0570-8
  10. Taprab Y, Ohkuma M, Johjima T, et al. Molecular phylogeny of symbiotic basidiomycetes of fungus-growing termites in Thailand and their relationship with the host. Biosci Biotechnol Biochem. 2002;66(5):1159-1163. https://doi.org/10.1271/bbb.66.1159
  11. Hsieh HM, Ju YM. Medicinal components in Termitomyces mushrooms. Appl Microbiol Biotechnol. 2018;102(12):4987-4994.
  12. Woldegiorgis AZ, Abate D, Haki GD, et al. Antioxidant property of edible mushrooms collected from Ethiopia. Food Chem. 2014;157:30-36. https://doi.org/10.1016/j.foodchem.2014.02.014
  13. Lu YY, Ao ZH, Lu ZM, et al. Analgesic and anti-inflammatory effects of the dry matter of culture broth of Termitomyces albuminosus and its extracts. J Ethnopharmacol. 2008;120(3):432-436. https://doi.org/10.1016/j.jep.2008.09.021
  14. Mahamat O, Christopher T, Andre-Ledoux N, et al. Screening of the immunomodulatory and antibacterial activity of Termitomyces letestui (Pat.) Heim (Lyophyllaceae), an edible mushroom from Cameroon. J Basic Clin Physiol Pharmacol. 2018;29(6):645-650. https://doi.org/10.1515/jbcpp-2017-0189
  15. Manna DK, Nandi AK, Pattanayak M, et al. A water soluble beta-glucan of an edible mushroom Termitomyces heimii: structural and biological investigation. Carbohydr Polym. 2015;134:375-384. https://doi.org/10.1016/j.carbpol.2015.07.099
  16. Mau JL, Chao GR, Wu KT. Antioxidant properties of methanolic extracts from several ear mushrooms. J Agric Food Chem. 2001;49(11):5461-5467. https://doi.org/10.1021/jf010637h
  17. Mau JL, Lin HC, Chen CC. Antioxidant properties of several medicinal mushrooms. J Agric Food Chem. 2002;50(21):6072-6077. https://doi.org/10.1021/jf0201273
  18. Mondal A, Banerjee D, Majumder R, et al. Evaluation of in vitro antioxidant, anticancer and in vivo antitumour activity of Termitomyces clypeatus MTCC 5091. Pharm Biol. 2016;54(11):2536-2546. https://doi.org/10.3109/13880209.2016.1168854
  19. Nowakowski P, Markiewicz-Zukowska R, Bielecka J, et al. Treasures from the forest: evaluation of mushroom extracts as anti-cancer agents. Biomed Pharmacother. 2021;143:112106.
  20. Hsieh HM, Chung MC, Chen PY, et al. A termite symbiotic mushroom maximizing sexual activity at growing tips of vegetative hyphae. Bot Stud. 2017;58(1):39.
  21. Lu ZM, Tao WY, Zou XL, et al. Protective effects of mycelia of Antrodia camphorata and Armillariella tabescens in submerged culture against ethanol-induced hepatic toxicity in rats. J Ethnopharmacol. 2007;110(1):160-164. https://doi.org/10.1016/j.jep.2006.09.029
  22. Anusiya G, Gowthama Prabu U, Yamini NV, et al. A review of the therapeutic and biological effects of edible and wild mushrooms. Bioengineered. 2021;12(2):11239-11268. https://doi.org/10.1080/21655979.2021.2001183
  23. Patel S, Goyal A. Recent developments in mushrooms as anti-cancer therapeutics: a review. 3 Biotech. 2012;2(1):1-15. https://doi.org/10.1007/s13205-011-0036-2
  24. Konno S, Chu K, Feuer N, et al. Potent anticancer effects of bioactive mushroom extracts (Phellinus linteus) on a variety of human cancer cells. J Clin Med Res. 2015;7(2):76-82. https://doi.org/10.14740/jocmr1996w
  25. Shomali N, Onar O, Karaca B, et al. Antioxidant, anticancer, antimicrobial, and antibiofilm properties of the culinary-medicinal fairy ring mushroom, Marasmius oreades (Agaricomycetes). Int J Med Mushrooms. 2019;21(6):571-582. https://doi.org/10.1615/IntJMedMushrooms.2019030874
  26. Aanen DK, Eggleton P. Fungus-growing termites originated in African rain forest. Curr Biol. 2005;15(9):851-855. https://doi.org/10.1016/j.cub.2005.03.043
  27. Majumder R, Banik SP, Khowala S. AkP from mushroom Termitomyces clypeatus is a proteoglycan specific protease with apoptotic effect on HepG2. Int J Biol Macromol. 2016;91:198-207. https://doi.org/10.1016/j.ijbiomac.2016.05.034
  28. Njue AW, Omolo JO, Cheplogoi PK, et al. Cytotoxic ergostane derivatives from the edible mushroom Termitomyces microcarpus (Lyophyllaceae). Biochem Syst Ecol. 2018;76:12-14. https://doi.org/10.1016/j.bse.2017.11.006
  29. Inoue C, Yasuma T, D'Alessandro-Gabazza CN, et al. The fairy chemical imidazole-4-carboxamide inhibits the expression of Axl, PD-L1, and PD-L2 and improves response to cisplatin in melanoma. Cells. 2022;11(3):374.
  30. Malya IY, Wu J, Harada E, et al. Plant growth regulators and Axl and immune checkpoint inhibitors from the edible mushroom Leucopaxillus giganteus. Biosci Biotechnol Biochem. 2020;84(7):1332-1338. https://doi.org/10.1080/09168451.2020.1743170
  31. Ridwan AY, Wu J, Harada E, et al. Axl and immune checkpoints inhibitors from fruiting bodies of Pleurocybella porrigens. J Antibiot. 2020;73(10):733-736. https://doi.org/10.1038/s41429-020-0323-4
  32. Yasuma T, Toda M, Kobori H, et al. Subcritical water extracts from Agaricus blazei Murrill's mycelium inhibit the expression of immune checkpoint molecules and Axl receptor. J Fungi. 2021;7:590.
  33. Hafizi S, Dahlback B. Gas6 and protein S. Vitamin K-dependent ligands for the Axl receptor tyrosine kinase subfamily. FEBS J. 2006;273(23):5231-5244. https://doi.org/10.1111/j.1742-4658.2006.05529.x
  34. Waldman AD, Fritz JM, Lenardo MJ. A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nat Rev Immunol. 2020;20(11):651-668. https://doi.org/10.1038/s41577-020-0306-5
  35. D'Alessandro-Gabazza CN, Kobayashi T, Yasuma T, et al. A Staphylococcus pro-apoptotic peptide induces acute exacerbation of pulmonary fibrosis. Nat Commun. 2020;11(1):1539.
  36. D'Alessandro-Gabazza CN, Yasuma T, Kobayashi T, et al. Inhibition of lung microbiota-derived proapoptotic peptides ameliorates acute exacerbation of pulmonary fibrosis. Nat Commun. 2022;13(1):1558.
  37. Wisselink M, Aanen DK, van 't Padje A. The longevity of colonies of fungus-growing termites and the stability of the symbiosis. Insects. 2020;11(8):527.
  38. Abd Malek SN, Kanagasabapathy G, Sabaratnam V, et al. Lipid components of a Malaysian edible mushroom, Termitomyces heimii Natarajan. Int J Food Properties. 2012;15(4):809-814. https://doi.org/10.1080/10942912.2010.506017
  39. Yang G, Ahmad F, Liang S, et al. Termitomyces heimii associated with fungus-growing termite produces volatile organic compounds (VOCs) and lignocellulose-degrading enzymes. Appl Biochem Biotechnol. 2020;192(4):1270-1283. https://doi.org/10.1007/s12010-020-03376-w
  40. Konate S, Le Roux X, Verdier B, et al. Effect of underground fungus-growing termites on carbon dioxide emission at the point- and landscape-scales in an African savanna. Insects. 2003;17:305-314.
  41. Kusumawardhani D, Nandika D, Karlinasari L, et al. Architectural and physical properties of fungus comb from subterranean termite Macrotermes gilvus (Isoptera: Termitidae) mound. Biodiversitas. 2021;22(4):1627-1634. https://doi.org/10.13057/biodiv/d220406
  42. Singh K, Muljadi BP, Raeini AQ, et al. The architectural design of smart ventilation and drainage systems in termite nests. Sci Adv. 2019;5(3):eaat8520.
  43. Cosarinsky MI. The nest growth of the neotropical mound-building termite, Cornitermes cumulans: a micromorphological analysis. J Insect Sci. 2011;11:122.
  44. Turner JS. Termites as models of swarm cognition. Swarm Intell. 2011;5(1):19-43. https://doi.org/10.1007/s11721-010-0049-1
  45. Korb J, Linsenmair KE. Ventilation of termite mounds: new results require a new model. Behav Ecol. 2000;11(5):486-494. https://doi.org/10.1093/beheco/11.5.486
  46. Ocko SA, King H, Andreen D, et al. Solar-powered ventilation of African termite mounds. J Exp Biol. 2017;220(Pt 18):3260-3269. https://doi.org/10.1242/jeb.160895
  47. Turner JS. On the mound of Macrotermes Michaelseni as an organ of respiratory gas exchange. Physiol Biochem Zool. 2001;74(6):798-822. https://doi.org/10.1086/323990
  48. King H, Ocko S, Mahadevan L. Termite mounds harness diurnal temperature oscillations for ventilation. Proc Natl Acad Sci USA. 2015;112(37):11589-11593. https://doi.org/10.1073/pnas.1423242112
  49. Gargano ML, van Griensven LJLD, Isikhuemhen OS, et al. Medicinal mushrooms: valuable biological resources of high exploitation potential. Plant Biosyst. 2017;151(3):548-565. https://doi.org/10.1080/11263504.2017.1301590
  50. Ba DM, Ssentongo P, Beelman RB, et al. Higher mushroom consumption is associated with lower risk of cancer: a systematic review and meta-analysis of observational studies. Adv Nutr. 2021;12(5):1691-1704. https://doi.org/10.1093/advances/nmab015
  51. Delmanto RD, de Lima PL, Sugui MM, et al. Antimutagenic effect of Agaricus blazei Murrill mushroom on the genotoxicity induced by cyclophosphamide. Mutat Res. 2001;496(1-2):15-21. https://doi.org/10.1016/S1383-5718(01)00228-5
  52. Davra V, Kimani SG, Calianese D, et al. Ligand activation of TAM family receptors-implications for tumor biology and therapeutic response. Cancers. 2016;8:107.