DOI QR코드

DOI QR Code

Thymol Ameliorates Aspergillus fumigatus Keratitis by Downregulating the TLR4/ MyD88/ NF-kB/ IL-1β Signal Expression and Reducing Necroptosis and Pyroptosis

  • Limei Wang (Department of Ophthalmology, the Affiliated Hospital of Qingdao University) ;
  • Haijing Yan (Department of Ophthalmology, the Affiliated Hospital of Qingdao University) ;
  • Xiaomeng Chen (Department of Ophthalmology, the Affiliated Hospital of Qingdao University) ;
  • Lin Han (Gout Laboratory, the Affiliated Hospital of Qingdao University) ;
  • Guibo Liu (Department of Ophthalmology, the Affiliated Hospital of Qingdao University) ;
  • Hua Yang (Department of Ophthalmology, the Affiliated Hospital of Qingdao University) ;
  • Danli Lu (Department of Ophthalmology, the Affiliated Hospital of Qingdao University) ;
  • Wenting Liu (Department of Ophthalmology, the Affiliated Hospital of Qingdao University) ;
  • Chengye Che (Department of Ophthalmology, the Affiliated Hospital of Qingdao University)
  • Received : 2022.07.08
  • Accepted : 2022.11.26
  • Published : 2023.01.28

Abstract

Fungal keratitis is a refractory kind of keratopathy. We attempted to investigate the antiinflammatory role of thymol on Aspergillus fumigatus (A. fumigatus) keratitis. Wound healing and fluorescein staining of the cornea were applied to verify thymol's safety. Mice models of A. fumigatus keratitis underwent subconjunctival injection of thymol. The anti-inflammatory roles of thymol were verified by hematoxylin-eosin (HE) staining, slit lamp observation, quantitative real-time polymerase chain reaction (qRT-PCR), and Western blotting. In contrast with the DMSO group, more transparent corneas and less inflammatory cells infiltration were detected in mice treated with 50 ㎍/ml thymol. Thymol downregulated the synthesis of TLR4, MyD88, NF-kB, IL-1β, NLRP3, caspase 1, caspase 8, GSDMD, RIPK3 and MLKL. In summary, we proved that thymol played a protective part in A. fumigatus keratitis by cutting down inflammatory cells aggregation, downregulating the TLR4/ MyD88/ NF-kB/ IL-1β signal expression and reducing necroptosis and pyroptosis.

Keywords

Acknowledgement

This study was supported by the National Natural Science Foundation of China (82171019), the Natural Science Foundation of Shandong Province (ZR2021MH368).

References

  1. Hoffman JJ, Burton MJ, Leck A. 2021. Mycotic keratitis-A global threat from the Filamentous fungi. J. Fungi (Basel, Switzerland) 7.
  2. Ahmadikia K, Aghaei Gharehbolagh S, Fallah B, Naeimi Eshkaleti M, Malekifar P, Rahsepar S, et al. 2021. Distribution, prevalence, and causative agents of fungal keratitis: A systematic review and meta-analysis (1990 to 2020). Front. Cell Infect. Microbiol. 11: 698780.
  3. Niu L, Liu X, Ma Z, Yin Y, Sun L, Yang L, et al. 2020. Fungal keratitis: pathogenesis, diagnosis and prevention. Microb. Pathog. 138: 103802.
  4. Zhao W, Che C, Liu K, Zhang J, Jiang N, Yuan K, Zhao G. Fenretinide inhibits neutrophil recruitment and IL-1β production in Aspergillus fumigatus keratitis. Cornea 37:1579-1585.
  5. Vandenabeele P, Galluzzi L, Vanden Berghe T, Kroemer G. 2010. Molecular mechanisms of necroptosis: an ordered cellular explosion. Nat. Rev. Mol. Cell Biol. 11: 700-714. https://doi.org/10.1038/nrm2970
  6. Karmakar M, Katsnelson M, Malak HA, Greene NG, Howell SJ, Hise AG, et al. 2015. Neutrophil IL-1β processing induced by pneumolysin is mediated by the NLRP3/ASC inflammasome and caspase-1 activation and is dependent on K+  efflux. J. Immunol. 194: 1763-1775. https://doi.org/10.4049/jimmunol.1401624
  7. Wang LM, Yang H, Yan HJ, Ge RF, Wang YX, Xue SS, et al. 2022. Thymol protects against Aspergillus Fumigatus keratitis by inhibiting the LOX-1/IL-1β signaling pathway. Curr. Med. Sci. 42: 620-628. https://doi.org/10.1007/s11596-022-2512-9
  8. Jeong JH, Yang DS, Koo JH, Hwang DJ, Cho JY, Kang EB. 2017. Effect of resistance exercise on muscle metabolism and autophagy in sIBM. Med. Sci. Sports Exerc. 49: 1562-1571. https://doi.org/10.1249/MSS.0000000000001286
  9. Burdette BE, Esparza AN, Zhu H, Wang S. 2021. Gasdermin D in pyroptosis. Acta Pharm. Sin B. 11: 2768-2782. https://doi.org/10.1016/j.apsb.2021.02.006
  10. Pasparakis M, Vandenabeele P. 2015. Necroptosis and its role in inflammation. Nature 517: 311-320. https://doi.org/10.1038/nature14191
  11. Ratitong B, Pearlman E. 2021. Pathogenic Aspergillus and Fusarium as important causes of blinding corneal infections - the role of neutrophils in fungal killing, tissue damage and cytokine production. Curr. Opin. Microbiol. 63: 195-203. https://doi.org/10.1016/j.mib.2021.07.018
  12. Jain V, Mhatre K, Nair AG, Shome D, Natarajan S. 2010. Aspergillus keratitis in vernal shield ulcer--a case report and review. Int. Ophthalmol. 30: 641-644. https://doi.org/10.1007/s10792-010-9349-0
  13. Keay LJ, Gower EW, Iovieno A, Oechsler RA, Alfonso EC, Matoba A, et al. 2011. Clinical and microbiological characteristics of fungal keratitis in the United States, 2001-2007: a multicenter study. Ophthalmology 118: 920-926. https://doi.org/10.1016/j.ophtha.2010.09.011
  14. Anane S, Ben Ayed N, Malek I, Chebbi A, Lejri S, Bouguila H, et al. 2010. [Keratomycosis in the area of Tunis: epidemiological data, diagnostic and therapeutic modalities]. Ann. Biol. Clin. (Paris) 68: 441-447.
  15. Ansari Z, Miller D, Galor A. 2013. Current thoughts in fungal keratitis: diagnosis and treatment. Curr. Fungal Infect. Rep. 7: 209-218. https://doi.org/10.1007/s12281-013-0150-1
  16. Ting DSJ, Mohammed I, Lakshminarayanan R, Beuerman RW, Dua HS. 2022. Host defense peptides at the ocular surface: Roles in health and major diseases, and therapeutic potentials. Front. Med. (Lausanne). 9: 835843.
  17. Chai LY, Vonk AG, Kullberg BJ, Verweij PE, Verschueren I, van der Meer JW, et al. 2011. Aspergillus fumigatus cell wall components differentially modulate host TLR2 and TLR4 responses. Microbes Infect. 13: 151-159. https://doi.org/10.1016/j.micinf.2010.10.005
  18. Dai C, Wu J, Chen C, Wu X. 2019. Interactions of thymic stromal lymphopoietin with TLR2 and TLR4 regulate anti-fungal innate immunity in Aspergillus fumigatus-induced corneal infection. Exp. Eye Res. 182: 19-29. https://doi.org/10.1016/j.exer.2019.02.020
  19. Johnson AC, Heinzel FP, Diaconu E, Sun Y, Hise AG, Golenbock D, et al. 2005. Activation of toll-like receptor (TLR)2, TLR4, and TLR9 in the mammalian cornea induces MyD88-dependent corneal inflammation. Invest. Ophthalmol. Vis. Sci. 46: 589-595. https://doi.org/10.1167/iovs.04-1077
  20. Akhter N, Hasan A, Shenouda S, Wilson A, Kochumon S, Ali S, et al. 2018. TLR4/MyD88 -mediated CCL2 production by lipopolysaccharide (endotoxin): implications for metabolic inflammation. J. Diabetes Metab. Disord. 17: 77-84. https://doi.org/10.1007/s40200-018-0341-y
  21. Sozzani S, Locati M, Allavena P, Van Damme J, Mantovani A. 1996. Chemokines: a superfamily of chemotactic cytokines. Int. J. Clin. Lab. Res. 26: 69-82. https://doi.org/10.1007/BF02592349
  22. Broz P, Dixit VM. 2016. Inflammasomes: mechanism of assembly, regulation and signalling. Nat. Rev. Immunol. 16: 407-420. https://doi.org/10.1038/nri.2016.58
  23. Lamkanfi M, Dixit VM. 2009. Inflammasomes: guardians of cytosolic sanctity. Immunol. Rev. 227: 95-105. https://doi.org/10.1111/j.1600-065X.2008.00730.x
  24. Al Mamun A, Wu Y, Monalisa I, Jia C, Zhou K, Munir F, et al. 2021. Role of pyroptosis in spinal cord injury and its therapeutic implications. J. Adv. Res. 28: 97-109. https://doi.org/10.1016/j.jare.2020.08.004
  25. Chow SH, Deo P, Naderer T. 2016. Macrophage cell death in microbial infections. Cell Microbiol. 18: 466-474. https://doi.org/10.1111/cmi.12573
  26. Stephenson HN, Herzig A, Zychlinsky A. 2016. Beyond the grave: When is cell death critical for immunity to infection? Curr. Opin. Immunol. 38: 59-66. https://doi.org/10.1016/j.coi.2015.11.004
  27. Rock KL, Lai JJ, Kono H. 2011. Innate and adaptive immune responses to cell death. Immunol. Rev. 243: 191-205. https://doi.org/10.1111/j.1600-065X.2011.01040.x
  28. Black RA, Kronheim SR, Cantrell M, Deeley MC, March CJ, Prickett KS, et al. 1988. Generation of biologically active interleukin-1 beta by proteolytic cleavage of the inactive precursor. J. Biol. Chem. 263: 9437-9442. https://doi.org/10.1016/S0021-9258(19)76559-4
  29. Mehta VB, Hart J, Wewers MD. 2001. ATP-stimulated release of interleukin (IL)-1beta and IL-18 requires priming by lipopolysaccharide and is independent of caspase-1 cleavage. J. Biol. Chem. 276: 3820-3826. https://doi.org/10.1074/jbc.M006814200
  30. Yi YS. 2018. Regulatory Roles of flavonoids on inflammasome activation during inflammatory responses. Mol. Nutr. Food Res. 62: e1800147.
  31. Eltom S, Belvisi MG, Yew-Booth L, Dekkak B, Maher SA, Dubuis ED, et al. 2014. TLR4 activation induces IL-1β release via an IPAF dependent but caspase 1/11/8 independent pathway in the lung. Respir. Res. 15: 87.
  32. Bossaller L, Chiang PI, Schmidt-Lauber C, Ganesan S, Kaiser WJ, Rathinam VA, et al. 2012. Cutting edge: FAS (CD95) mediates noncanonical IL-1β and IL-18 maturation via caspase-8 in an RIP3-independent manner. J. Immunol. 189: 5508-5512. https://doi.org/10.4049/jimmunol.1202121
  33. Pauwels NS, Bracke KR, Dupont LL, Van Pottelberge GR, Provoost S, Vanden Berghe T, et al. 2011. Role of IL-1α and the Nlrp3/ caspase-1/IL-1β axis in cigarette smoke-induced pulmonary inflammation and COPD. Eur. Respir. J. 38: 1019-1028. https://doi.org/10.1183/09031936.00158110
  34. Shi J, Gao W, Shao F. 2017. Pyroptosis: Gasdermin-mediated programmed necrotic cell death. Trends Biochem. Sci. 42: 245-254. https://doi.org/10.1016/j.tibs.2016.10.004
  35. Shi J, Zhao Y, Wang K, Shi X, Wang Y, Huang H, et al. 2015. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 526: 660-665. https://doi.org/10.1038/nature15514
  36. Van Opdenbosch N, Lamkanfi M. 2019. Caspases in cell death, inflammation, and disease. Immunity 50: 1352-1364. https://doi.org/10.1016/j.immuni.2019.05.020
  37. Chi W, Li F, Chen H, Wang Y, Zhu Y, Yang X, et al. 2014. Caspase-8 promotes NLRP1/NLRP3 inflammasome activation and IL-1β production in acute glaucoma. Proc. Natl. Acad. Sci. USA 111: 11181-11186. https://doi.org/10.1073/pnas.1402819111
  38. Mulay SR, Desai J, Kumar SV, Eberhard JN, Thomasova D, Romoli S, et al. 2016. Cytotoxicity of crystals involves RIPK3-MLKLmediated necroptosis. Nat. Commun. 7: 10274.
  39. Wang B, Cui Y, Zhang Q, Wang S, Xu S. 2021. Selenomethionine alleviates LPS-induced JNK/NLRP3 inflammasome-dependent necroptosis by modulating miR-15a and oxidative stress in chicken lungs. Metallomics 13: mfa048.
  40. Conos SA, Chen KW, De Nardo D, Hara H, Whitehead L, Nunez G, et al. 2017. Active MLKL triggers the NLRP3 inflammasome in a cell-intrinsic manner. Proc. Natl. Acad. Sci. USA 114: E961-E969. https://doi.org/10.1073/pnas.1613305114
  41. Liu L, Tang Z, Zeng Y, Liu Y, Zhou L, Yang S, et al. 2021. Role of necroptosis in infection-related, immune-mediated, and autoimmune skin diseases. J. Dermatol. 48: 1129-1138. https://doi.org/10.1111/1346-8138.15929
  42. Liu S, Liu H, Johnston A, Hanna-Addams S, Reynoso E, Xiang Y, et al. 2017. MLKL forms disulfide bond-dependent amyloid-like polymers to induce necroptosis. Proc. Natl. Acad. Sci. USA 114: E7450-E7459.  https://doi.org/10.1073/pnas.1707531114