• Title/Summary/Keyword: Antenna

Search Result 6,376, Processing Time 0.03 seconds

Study on Policy Improvement Measures for Companies Residing in Industry-academia Convergence zone (산학융합지구 입주기업 정책 개선방안 연구)

  • Yu-Bok Choi
    • Journal of Digital Convergence
    • /
    • v.22 no.2
    • /
    • pp.1-9
    • /
    • 2024
  • The purpose of this study is to verify whether companies residing in industry-academic convergence zones designated by the government are achieving policy goals and to seek policy implications and directions for improvement through analysis. For the study, business activities targeting resident companies were divided into infrastructure, business content, management, and system aspects, and business performance indicators, resident company satisfaction surveys, and differences in sales increase between resident companies and non-resident companies were analyzed through t-test. Based on statistical analysis results, performance indicators, and corporate survey analysis results, we track joint industry-academia R&D projects to maximize the effectiveness for companies, develop and operate human resources management for teams, and provide financial support for ordinances of metropolitan local governments. Improvements such as stipulation, antenna facilities at the corporate research center, and improvement of the researcher's residential environment were suggested. This study is the first to quantitatively verify policy performance targeting companies residing in industry-academic convergence zones, a large-scale government project, and future follow-up research is needed, including analysis of policy effects based on various variables such as employment indicators and corporate financial indicators.

Direction of Tissue Contraction after Microwave Ablation: A Comparative Experimental Study in Ex Vivo Bovine Liver

  • Junhyok Lee;Hyunchul Rhim;Min Woo Lee;Tae Wook Kang;Kyoung Doo Song;Jeong Kyong Lee
    • Korean Journal of Radiology
    • /
    • v.23 no.1
    • /
    • pp.42-51
    • /
    • 2022
  • Objective: This study aimed to investigate the direction of tissue contraction after microwave ablation in ex vivo bovine liver models. Materials and Methods: Ablation procedures were conducted in a total of 90 sites in ex vivo bovine liver models, including the surface (n = 60) and parenchyma (n = 30), to examine the direction of contraction of the tissue in the peripheral and central regions from the microwave antenna. Three commercially available 2.45-GHz microwave systems (Emprint, Neuwave, and Surblate) were used. For surface ablation, the lengths of two overlapped square markers were measured after 2.5- and 5-minutes ablations (n = 10 ablations for each system for each ablation time). For parenchyma ablation, seven predetermined distances between the markers were measured on the cutting plane after 5- and 10-minutes ablations (n = 5 ablations for each system for each ablation time). The contraction in the radial and longitudinal directions and the sphericity index (SI) of the ablation zones were compared between the three systems using analysis of variance. Results: In the surface ablation experiment, the mean longitudinal contraction ratio and SI from a 5-minutes ablation using the Emprint, Neuwave, and Surblate systems were 28.92% and 1.04, 20.10% and 0.53, and 24.90% and 0.45, respectively (p < 0.001). A positive correlation between longitudinal contraction and SI was noted, and a similar radial contraction was observed. In the parenchyma ablation experiment, the mean longitudinal contraction ratio and SI from a 10-minutes ablation using the three pieces of equipment were 38.60% and 1.06, 32.45% and 0.61, and 28.50% and 0.50, respectively (p < 0.001). There was a significant difference in the longitudinal contraction properties, whereas there was no significant difference in the radial contraction properties. Conclusion: The degree of longitudinal contraction showed significant differences depending on the microwave ablation equipment, which may affect the SI of the ablation zone.

GPR Development for Landmine Detection (지뢰탐지를 위한 GPR 시스템의 개발)

  • Sato, Motoyuki;Fujiwara, Jun;Feng, Xuan;Zhou, Zheng-Shu;Kobayashi, Takao
    • Geophysics and Geophysical Exploration
    • /
    • v.8 no.4
    • /
    • pp.270-279
    • /
    • 2005
  • Under the research project supported by Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT), we have conducted the development of GPR systems for landmine detection. Until 2005, we have finished development of two prototype GPR systems, namely ALIS (Advanced Landmine Imaging System) and SAR-GPR (Synthetic Aperture Radar-Ground Penetrating Radar). ALIS is a novel landmine detection sensor system combined with a metal detector and GPR. This is a hand-held equipment, which has a sensor position tracking system, and can visualize the sensor output in real time. In order to achieve the sensor tracking system, ALIS needs only one CCD camera attached on the sensor handle. The CCD image is superimposed with the GPR and metal detector signal, and the detection and identification of buried targets is quite easy and reliable. Field evaluation test of ALIS was conducted in December 2004 in Afghanistan, and we demonstrated that it can detect buried antipersonnel landmines, and can also discriminate metal fragments from landmines. SAR-GPR (Synthetic Aperture Radar-Ground Penetrating Radar) is a machine mounted sensor system composed of B GPR and a metal detector. The GPR employs an array antenna for advanced signal processing for better subsurface imaging. SAR-GPR combined with synthetic aperture radar algorithm, can suppress clutter and can image buried objects in strongly inhomogeneous material. SAR-GPR is a stepped frequency radar system, whose RF component is a newly developed compact vector network analyzers. The size of the system is 30cm x 30cm x 30 cm, composed from six Vivaldi antennas and three vector network analyzers. The weight of the system is 17 kg, and it can be mounted on a robotic arm on a small unmanned vehicle. The field test of this system was carried out in March 2005 in Japan.

Effective 3-D GPR Survey for the Exploration of Old Remains (유적지 발굴을 위한 효율적 3차원 GPR 탐사)

  • Kim, Jung-Ho;Yi, Myeong-Jong;Son, Jeong-Sul;Cho, Seong-Jun;Park, Sam-Gyu
    • Geophysics and Geophysical Exploration
    • /
    • v.8 no.4
    • /
    • pp.262-269
    • /
    • 2005
  • Since the buried cultural relics are three-dimensional (3-D) objects in nature, 3-D survey is more preferable in archeological exploration. 3-D Ground Penetrating Radar (GPR) survey based on very dense data in principle, however, might need much higher cost and longer time of exploration than other geophysical methods commonly used for the archeological exploration, such as magnetic and electromagnetic methods. We developed a small-scale continuous data acquisition system which consists of two sets of GPR antennas and the precise positioning device tracking the moving-path of GPR antenna automatically and continuously. Since the high cost of field work may be partly attributed to establishing many profile lines, we adopted a concept of data acquisition at arbitrary locations not along the pre-established profile lines. Besides this hardware system, we also developed several software packages in order to effectively process and visualize the 3-D data obtained by the developed system and the data acquisition concept. Using the developed system, we performed 3-D GPR survey to investigate the possible historical remains of Baekje Kingdom at Buyeo city, South Korea, prior to the excavation. Owing to the newly devised system, we could obtain 3-D GPR data of this survey area having areal extent over about $17,000m^2$ within only six-hours field work. Although the GPR data were obtained at random locations not along the pre-established profile lines, we could obtain high-resolution 3-D images showing many distinctive anomalies, which could be interpreted as old agricultural lands, waterways, and artificial structures or remains. This cast: history led us to the conclusion that 3-D GPR method is very useful not only to examine a small anomalous area but also to investigate the wider region of the archeological interests.

Mapping Precise Two-dimensional Surface Deformation on Kilauea Volcano, Hawaii using ALOS2 PALSAR2 Spotlight SAR Interferometry (ALOS-2 PALSAR-2 Spotlight 영상의 위성레이더 간섭기법을 활용한 킬라우에아 화산의 정밀 2차원 지표변위 매핑)

  • Hong, Seong-Jae;Baek, Won-Kyung;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_3
    • /
    • pp.1235-1249
    • /
    • 2019
  • Kilauea Volcano is one of the most active volcano in the world. In this study, we used the ALOS-2 PALSAR-2 satellite imagery to measure the surface deformation occurring near the summit of the Kilauea volcano from 2015 to 2017. In order to measure two-dimensional surface deformation, interferometric synthetic aperture radar (InSAR) and multiple aperture SAR interferometry (MAI) methods were performed using two interferometric pairs. To improve the precision of 2D measurement, we compared root-mean-squared deviation (RMSD) of the difference of measurement value as we change the effective antenna length and normalized squint value, which are factors that can affect the measurement performance of the MAI method. Through the compare, the values of the factors, which can measure deformation most precisely, were selected. After select optimal values of the factors, the RMSD values of the difference of the MAI measurement were decreased from 4.07 cm to 2.05 cm. In each interferograms, the maximum deformation in line-of-sight direction is -28.6 cm and -27.3 cm, respectively, and the maximum deformation in the along-track direction is 20.2 cm and 20.8 cm, in the opposite direction is -24.9 cm and -24.3 cm, respectively. After stacking the two interferograms, two-dimensional surface deformation mapping was performed, and a maximum surface deformation of approximately 30.4 cm was measured in the northwest direction. In addition, large deformation of more than 20 cm were measured in all directions. The measurement results show that the risk of eruption activity is increasing in Kilauea Volcano. The measurements of the surface deformation of Kilauea volcano from 2015 to 2017 are expected to be helpful for the study of the eruption activity of Kilauea volcano in the future.

Freshwater Fish Utilization of Fishway Installed in the Jangheung Dam (장흥댐에 설치되어 있는 어도와 담수어류의 이용 분석)

  • Yoon, Ju-Duk;Kim, Jeong-Hui;Joo, Gea-Jae;Seo, Jin-Won;Pak, Hubert;Jang, Min-Ho
    • Korean Journal of Ecology and Environment
    • /
    • v.44 no.3
    • /
    • pp.264-271
    • /
    • 2011
  • At the Jangheung multipurpose dam, which is on the Tamjin River, a trapping and trucking operation was established to maintain continuous upstream migration of fish,. To facilitate fish gathering, installation of an effective fishing trap was required. In this study, we evaluated the fish trap, established at the Jangheung dam, using PIT (Passive Integrated Transponder) telemetry. A total of 254 individuals from 15 species were monitored. Among these tagged species, 36 individuals from 6 species (Carassius auratus, C. cuvieri, Zacco temminckii, Z. platypus, Pungtungia herzi, and Pseudobagrus koreanus) were detected; a 14.2% detection rate. C. auratus recorded the highest detection rate of 44.2% while P. herzi was 14.3%. Z. temminckii and Z. platypus showed relatively low detection, 5% and 7.7% respectively. Some of individuals from C. auratus and Z. platypus did not pass through the antenna at the first attempt but were continuously detected on multiple days. There were no statistical differences in body size (total length, standard length and body weight) of individuals that did or did not swim into the trap (Mann-Whitney U test, p>0.05). Fish mainly swam into the trap during outflow of water from the dam (Mann-Whitney U test, p<0.001) and showed a higher detection frequency in daytime than nighttime (Mann-Whitney U test, p<0.001). Thus, for fish movement into the trap, external factors such as outflow from dam and time of day have important roles. Based on detection rate, not all fishes showed upstream migration but represented selective migration. Consequently, the establishment of flexible outflow strategies that take into consideration ecological characteristics of fishes should required for improving the efficiency of fishway.

Effects of Feedback Signals on DTV Repeaters (DTV 중계기의 궤환신호의 영향)

  • Kang, Sang-Gee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.10
    • /
    • pp.1737-1743
    • /
    • 2006
  • OCR(On channel repeater) provides the high frequency reuse efficiency for allocating frequency bands to repeaters because the frequency of input and output signals of OCRs is the same. However the oscillation probability of OCRs is high due to the same input and output frequency. In order to prevent a repeater from oscillating, we must keep the antenna isolation higher than the gain of the repeater with a some margin. In this paper we simulated the effects of the amplitude, phase and time delay of feedback signals (m the characteristics of non-regeneration OCR. Simulation results show that the highest probability of oscillation is occurred when the gain of a repeater is the same value of the isolation. From the simulation results, we know that the phase of feedback signals can be adjusted to reduce the possibility of oscillation if a non-regeneration repeater has a narrow operation bandwidth or a signal bandwidth is narrow. As the time delay increases, the probability of oscillation and the fluctuation of gain over a certain frequency band increase also. The effects of the amplitude and phase of feedback signals on S/N of 8-VSB signal for generation and non-generation repeater were tested. The measured results show that the set-top can receive 8-VSB signal when the received signal power is $17{\sim}18dB$ higher than the noise power. When the isolation is almost same as the gain of the repeater, then the set-top can not receive 8-VSB signals due to the oscillation of the repeater. And the phase of feedback signals affects S/N at the output of the repeater when the isolation is $11.75{\sim}13.75dB$ larger than the gain of the repeater. In this case the set-top can not receive 8-VSB signal of at $48^{\circ}\;and\;347^{\circ}$ of the phase of feedback signals. However the phase of feedback signals can not affect the S/N of 8-VSB signals of the generation repeater because of the demodulation and modulation process of the generation repenter. The set-top can not receive 8-VSB signals when the amplitude of feedback signals is $12.6{\sim}13.6dB$ larger than the wanted signal power at the input port of the repeater. It's because that the amplitude of feedback signals saturates the front end of the repeater.

Channel Model and Wireless Link Performance Analysis for Short-Range Wireless Communication Applications in the Terahertz Frequency (테라헤르츠 대역 주파수에서 근거리 무선 통신 응용을 위한 채널 모델 및 무선 링크 성능 분석)

  • Chung, Tae-Jin
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.9
    • /
    • pp.868-882
    • /
    • 2009
  • In this paper, channel model and wireless link performance analysis for the short-range wireless communication system applications in the terahertz frequency which is currently interested in many countries will be described. In order to realize high data rates above 10 Gbps, the more wide bandwidths will be required than the currently available bandwidths of millimeter-wave frequencies, therefore, the carrier frequencies will be pushed to THz range to obtain larger bandwidths. From the THz atmospheric propagation characteristics based on ITU-R P.676-7, the available bandwidths were calculated to be 68, 48 and 45 GHz at the center frequencies of 220, 300 and 350 GHz, respectively. With these larger bandwidths, it was shown from the simulation that higher data rate above 10 Gbps can be achieved using lower order modulation schemes which have spectral efficiency of below 1. The indoor propagation delay spread characteristics were analyzed using a simplified PDP model with respect to building materials. The RMS delay spread was calculated to be 9.23 ns in a room size of $6\;m(L){\times}5\;m(W){\times}2.5\;m(H)$ for the concrete plaster with TE polarization, which is a similar result of below 10 ns from the Ray-Tracing simulation in the reference paper. The indoor wireless link performance analysis results showed that receiver sensitivity was $-56{\sim}-46\;dBm$ over bandwidth of $5{\sim}50\;GHz$ and antenna gain was calculated to be $26.6{\sim}31.6\;dBi$ at link distance of 10m under the BPSK modulation scheme. The maximum achievable data rates were estimated to be 30, 16 and 12 Gbps at the carrier frequencies of 220, 300 and 350 GHz, respectively, under the A WGN and LOS conditions, where it was assumed that the output power of the transmitter is -15 dBm and link distance of 1 m with BER of $10^{-12}$. If the output power of transmitter is increased, the more higher data rate can be achieved than the above results.

Performance Analysis of Implementation on IoT based Smart Wearable Mine Detection Device

  • Kim, Chi-Wook
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.12
    • /
    • pp.51-57
    • /
    • 2019
  • In this paper, we analyzed the performance of IoT based smart wearable mine detection device. There are various mine detection methods currently used by the military. Still, in the general field, mine detection is performed by visual detection, probe detection, detector detection, and other detection methods. The detection method by the detector is using a GPR sensor on the detector, which is possible to detect metals, but it is difficult to identify non-metals. It is hard to distinguish whether the area where the detection was performed or not. Also, there is a problem that a lot of human resources and time are wasted, and if the user does not move the sensor at a constant speed or moves too fast, it is difficult to detect landmines accurately. Therefore, we studied the smart wearable mine detection device composed of human body antenna, main microprocessor, smart glasses, body-mounted LCD monitor, wireless data transmission, belt type power supply, black box camera, which is to improve the problem of the error of mine detection using unidirectional ultrasonic sensing signal. Based on the results of this study, we will conduct an experiment to confirm the possibility of detecting underground mines based on the Internet of Things (IoT). This paper consists of an introduction, experimental environment composition, simulation analysis, and conclusion. Introduction introduces the research contents such as mines, mine detectors, and research progress. It consists of large anti-personnel mine, M16A1 fragmented anti-mine, M15 and M19 antitank mines, plastic bottles similar to mines and aluminum cans. Simulation analysis is conducted by using MATLAB to analyze the mine detection device implementation performance, generating and transmitting IoT signals, and analyzing each received signal to verify the detection performance of landmines. Then we will measure the performance through the simulation of IoT-based mine detection algorithm so that we will prove the possibility of IoT-based detection landmine.

Three dimensional GPR survey for the exploration of old remains at Buyeo area (부여지역 유적지 발굴을 위한 3차원 GPR 탐사)

  • Kim Jung-Bo;Son Jeong-Sul;Yi Myeong-Jong;Lim Seong-Keun;Cho Seong-Jun;Jeong Ji-Min;Park Sam-Gyu
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.49-69
    • /
    • 2004
  • One of the important roles of geophysical exploration in archeological survey may be to provide the subsurface information for effective and systematic excavations of historical remains. Ground Penetrating Radar (GPA) can give us images of shallow subsurface structure with high resolution and is regarded as a useful and important technology in archeological exploration. Since the buried cultural relics are the three-dimensional (3-D) objects in nature, the 3-D or areal survey is more desirable in archeological exploration. 3-D GPR survey based on the very dense data in principle, however, might need much higher cost and longer time of exploration than the other geophysical methods, thus it could have not been applied to the wide area exploration as one of routine procedures. Therefore, it is important to develop an effective way of 3-D GPR survey. In this study, we applied 3-D GPR method to investigate the possible historical remains of Baekje Kingdom at Gatap-Ri, Buyeo city, prior to the excavation. The principal purpose of the investigation was to provide the subsurface images of high resolution for the excavation of the surveyed area. Besides this, another purpose was to investigate the applicability and effectiveness of the continuous data acquisition system which was newly devised for the archeological investigation. The system consists of two sets of GPR antennas and the precise measurement device tracking the path of GPR antenna movement automatically and continuously Besides this hardware system, we adopted a concept of data acquisition that the data were acquired arbitrary not along the pre-established profile lines, because establishing the many profile lines itself would make the field work much longer, which results in the higher cost of field work. Owing to the newly devised system, we could acquire 3-D GPR data of an wide area over about $17,000 m^2$ as a result of the just two-days field work. Although the 3-D GPR data were gathered randomly not along the pre-established profile lines, we could have the 3-D images with high resolution showing many distinctive anomalies which could be interpreted as old agricultural lands, waterways, and artificial structures or remains. This case history led us to the conclusion that 3-D GPR method can be used easily not only to examine a small anomalous area but also to investigate the wider region of archeological interests. We expect that the 3-D GPR method will be applied as a one of standard exploration procedures to the exploration of historical remains in Korea in the near future.

  • PDF