Freshwater Fish Utilization of Fishway Installed in the Jangheung Dam

장흥댐에 설치되어 있는 어도와 담수어류의 이용 분석

  • Yoon, Ju-Duk (Institute of Environmental Technology and Industry, Pusan National University) ;
  • Kim, Jeong-Hui (Department of Biology Education, Kongju National University) ;
  • Joo, Gea-Jae (Department of Biology, Pusan National University) ;
  • Seo, Jin-Won (Department of Biological & Agricultural Engineering, University of Idaho) ;
  • Pak, Hubert (Department of English Education, Kongju National University) ;
  • Jang, Min-Ho (Department of Biology Education, Kongju National University)
  • Received : 2011.07.23
  • Accepted : 2011.09.20
  • Published : 2011.09.30

Abstract

At the Jangheung multipurpose dam, which is on the Tamjin River, a trapping and trucking operation was established to maintain continuous upstream migration of fish,. To facilitate fish gathering, installation of an effective fishing trap was required. In this study, we evaluated the fish trap, established at the Jangheung dam, using PIT (Passive Integrated Transponder) telemetry. A total of 254 individuals from 15 species were monitored. Among these tagged species, 36 individuals from 6 species (Carassius auratus, C. cuvieri, Zacco temminckii, Z. platypus, Pungtungia herzi, and Pseudobagrus koreanus) were detected; a 14.2% detection rate. C. auratus recorded the highest detection rate of 44.2% while P. herzi was 14.3%. Z. temminckii and Z. platypus showed relatively low detection, 5% and 7.7% respectively. Some of individuals from C. auratus and Z. platypus did not pass through the antenna at the first attempt but were continuously detected on multiple days. There were no statistical differences in body size (total length, standard length and body weight) of individuals that did or did not swim into the trap (Mann-Whitney U test, p>0.05). Fish mainly swam into the trap during outflow of water from the dam (Mann-Whitney U test, p<0.001) and showed a higher detection frequency in daytime than nighttime (Mann-Whitney U test, p<0.001). Thus, for fish movement into the trap, external factors such as outflow from dam and time of day have important roles. Based on detection rate, not all fishes showed upstream migration but represented selective migration. Consequently, the establishment of flexible outflow strategies that take into consideration ecological characteristics of fishes should required for improving the efficiency of fishway.

댐이나 보와 같은 하천내 구조물의 건설시 어도의 설치는 어류의 이동에 있어서 중요한 역할을 한다. 탐진강에 건설되어 있는 장흥 다목적댐에는 어류의 상류로 이동을 원활히 하기 위해 엘리베이터식 어도에 포함되는 트럭식 댐체어도가 방류구 옆쪽에 위치하고 있다. 이러한 종류의 어도는 효율적으로 어류를 포집하기 위한 트랩이 함께 설치된다. 본 연구에서는 장흥댐에 설치되어 있는 어도 트랩의 어류 이용정도를 파악하기 위하여 PIT telemetry 방식을 적용, 총 15종 254개체의 어류에 tag을 삽입하여 모니터링을 하였다. 붕어, 떡붕어, 돌고기, 갈겨니, 피라미, 눈동자개 6종 36개체가 감지되어 14.2%의 감지율을 나타냈다. 붕어가 43개체 중 19개체가 감지되어 44.2%로 가장 높은 감지 비율을 보였고 돌고기는 14.3%의 비율을 나타냈으며, 갈겨니와 피라미는 각각 5%와 7.7%의 감지 비율을 나타냈다. 일부 개체들은 한번에 어도내로 이동하지 않고 장기간에 걸쳐 꾸준히 신호가 감지되었다. 이동한 개체들과 이동하지 않은 개체들 사이에 크기 (전장, 체장, 체중)는 차이가 없었으며(Mann-Whitney U test, p>0.05), 주로 댐에서 방류가 이루어지는 시간에 트랩으로 이동하는 것으로 파악되었다 (Mann-Whitney U test, p<0.001). 시간대별 분석에서는 주로 야간시간대보다 주간시간대에서 더 높은 감지빈도를 보였다(Mann-Whitney U test, p<0.001). 본 연구의 결과에 의하면, 어류가 트랩으로 이동하는 데는 방류시간과 같은 외적인 요소와 각 종별 생태적 특성(산란기, 주행성, 야행성)이 중요한 역할을 하고 있었다. 따라서 어류의 어도 이용율을 높이기 위해서는 어류의 생태적 특성을 고려하여 방류량과 더불어 방류시간, 방류시간대를 적절하게 변화시키는 전략적 방류가 필요할 것으로 판단된다.

Keywords

References

  1. Kim, I.S. and J.Y. Park. 2002. Freshwater fish of Korea. Kyo-Hak Publishing. Seoul.
  2. Seo, J.W. 2010. Eco-friendly operation and management of Jangheung Dam with Fishway. K-water TechZine 5: 80-89.
  3. Aarestrup, K., M.C. Lucas and J.A. Hansen. 2003. Efficiency of a nature-like bypass channel for sea trout (Salmo trutta) ascending a small Danish stream studied by PIT telemetry. Ecology of Freshwater Fish 12: 160-168. https://doi.org/10.1034/j.1600-0633.2003.00028.x
  4. Albanese, B., P.L. Angermeier and C. Gowan. 2003. Designing mark-recapture studies to reduce effects of distance weighting on movement distance distributions of stream fish. Transactions of the American Fisheries Society 132: 925-939. https://doi.org/10.1577/T03-019
  5. Allan, J.D. and A.S. Flecker. 1993. Biodiversity conservation in running waters. Bioscience 43: 32-43. https://doi.org/10.2307/1312104
  6. Bain, M.B. and J.T. Finn. 1988. Streamflow regulation and fish community structure. Ecology 69: 382-392. https://doi.org/10.2307/1940436
  7. Barry, T. and B. Kynard. 1986. Attraction of adult American shad to fish lifts at Holyoke Dam, Connecticut River. North American Journal of Fisheries Management 6: 233-241. https://doi.org/10.1577/1548-8659(1986)6<233:AOAAST>2.0.CO;2
  8. Bunt, C.M. 2001. Fishway entrance modifications enhance fish attraction. Fisheries Management and Ecology 8: 95-105. https://doi.org/10.1046/j.1365-2400.2001.00238.x
  9. Castro-Santos, T., A. Haro and S. Walk. 1996. A passive integrated transponder (PIT) tag system for monitoring fishways. Fisheries Research 28: 253-261. https://doi.org/10.1016/0165-7836(96)00514-0
  10. Clay, C.H. 1995. Design of Fishways and Other Fish Facilities. Lewis Publishers, Boca Raton.
  11. Gehrke, P.C., D.M. Gilligan and M. Barwick. 2002. Changes in fish community of the Shoalhaven River 20 years after construction of Tallowa dam, Australia. River Research and Application 18: 265-286. https://doi.org/10.1002/rra.669
  12. Gray, A. 1992. The Ecological Impact of Estuarine Barrages. British Ecological Society/Field Studies Council, Shrewsbury.
  13. Habit, E., M.C. Belk and O. Parra. 2007. Response of the riverine fish community to the construction and operation of a diversion hydropower plant in central Chile. Aquatic Conservation: Marine and Freshwater Ecosystems 17: 37-49. https://doi.org/10.1002/aqc.774
  14. Heggenes, J. and K.H. Roed. 2006. Do dams increase genetic diversity in brown trout (Salmo trutta)? Microgeographic differentiation in a fragmented river. Ecology of Freshwater Fish 15: 366-375. https://doi.org/10.1111/j.1600-0633.2006.00146.x
  15. Joy, M.K. and R.G. Death. 2001. Control of freshwater fish and crayfish community structure in Taranaki, New Zealand: dams, diadromy or habitat structure? Freshwater Biology 46: 417-429. https://doi.org/10.1046/j.1365-2427.2001.00681.x
  16. Kinsolving, A.D. and M.B. Bain. 1993. Fish assemblage recovery along a riverine disturbance gradient. Ecological Application 3: 531-544. https://doi.org/10.2307/1941921
  17. Lemly, A.D., R.T. Kingsford and J.R. Thompson. 2000. Irrigated agriculture and wildlife conservation: conflict on a global scale. Environmental Management 25: 485-512. https://doi.org/10.1007/s002679910039
  18. Lucas, M.C. and E. Baras. 2001. Migration of Freshwater Fishes. Blackwell Science, Oxford.
  19. Martinez, P.J., T.E. Chart, M.A. Trammell, J.G. Wullschleger and E.P. Bergersen. 1994. Fish species composition before and after construction of a main stem reservoir on the White River, Colorado. Environmental Biology of Fish 40: 227-239. https://doi.org/10.1007/BF00002509
  20. Morhardt, J.E., D. Bisher, C.I. Handlin and S.D. Mulder. 2000. A portable system for reading large PIT tags from wild trout. North American Journal of Fisheries Management 20: 276-283. https://doi.org/10.1577/1548-8675(2000)020<0276:APSFRL>2.0.CO;2
  21. Moyle, P.B. and J.J. Cech. 2000. Fishes: an Introduction to Ichthyology. 4th edition. Prentice Hall Inc., New Jersey.
  22. Nicola, G.G., B. Elvira and A. Almodovar. 1996. Dams and fish passage facilities in the large rivers of Spain: effects on migratory species. Archiv fur Hydrobiologie 113: 375-379.
  23. Penczak, T. 2006. Restricted-movement paradigm: fish displacements in a small lowland streamlet. Polish Journal of Ecology 54: 145-149.
  24. Poff, N.L. and D.D. Hart. 2002. How dam vary and why it matters for the emerging science of dam removal. Bioscience 52: 659-668. https://doi.org/10.1641/0006-3568(2002)052[0659:HDVAWI]2.0.CO;2
  25. Poff, N.L., J.D. Allan, M.B. Bain, J.R. Karr, K.L. Prestegaard, B.D. Richter, R.E. Sparks and J.C. Stromberg. 1997. The nature flow regime: a paradigm for river conservation and restoration. Bioscience 47: 769-784. https://doi.org/10.2307/1313099
  26. Quinn, J.W. and T.J. Kwak. 2003. Fish assemblage changes in an Ozark River after impoundment: a long-term perspective. Transactions of the American Fisheries Society 132: 110-119. https://doi.org/10.1577/1548-8659(2003)132<0110:FACIAO>2.0.CO;2
  27. Thomas, D.H.L. 1996. Dam construction and ecological change in the riparian forest of the Hadejia-Jama' are floodplain, Nigeria. Land Degradation and Development 7: 279-295. https://doi.org/10.1002/(SICI)1099-145X(199612)7:4<279::AID-LDR234>3.0.CO;2-L
  28. Yamamoto, S., K. Morita, I. Koizumi and K. Maekawa. 2004. Genetic differentiation of white-spotted charr (Salvelinus leucomaenis) populations after habitat fragmentation: spatial-temporal changes in gene frequencies. Conservation Genetics 5: 529-538. https://doi.org/10.1023/B:COGE.0000041029.38961.a0