• 제목/요약/키워드: Anomaly Detect System

검색결과 111건 처리시간 0.026초

센서네트워크에서 유전자 알고리즘을 이용한 침입탐지시스템 노드 스케줄링 연구 (A Study on the Intrusion Detection System's Nodes Scheduling Using Genetic Algorithm in Sensor Networks)

  • 성기택
    • 한국정보통신학회논문지
    • /
    • 제15권10호
    • /
    • pp.2171-2180
    • /
    • 2011
  • 센서네트워크의 다양한 응용분야에서 보안성은 대단히 중요하다. 침입탐지는 공격에 대한 방어기법 중의 하나 이지만 기존의 정형화된 침입탐지기술은 제한된 자원으로 운영되는 센서네트워크에는 적절하지 않다. 본 논문에서는 전송되는 패킷의 이상행위를 관찰하는 침입탐지시스템에서 탐지노드의 선정 및 운영에 관한 방법과 함께 침입탐지시스템의 수명을 최대화하는 노드 스케줄링 방안을 제안하였다. 제안된 최적화식에 대하여 유전자 알고리즘을 이용한 해를 개발하고 시뮬레이션을 수행하여 효율성을 확인하였다.

네트워크 보안에서 모니터링 기반 실시간 침입 탐지 (A Real-Time Intrusion Detection based on Monitoring in Network Security)

  • 임승철
    • 한국인터넷방송통신학회논문지
    • /
    • 제13권3호
    • /
    • pp.9-15
    • /
    • 2013
  • 최근 침입 탐지 시스템은 공격의 수가 극적으로 증가하고 있기 때문에 컴퓨터 네트워크 시스템에서 아주 중요한 기술이다. 어려운 침입에 대한 감시데이터를 분석하기 때문에 침입 탐지 방법의 대부분은 실시간적으로 침입을 탐지하지 않는다. 네트워크 침입 탐지 시스템은 개별 사용자, 그룹, 원격 호스트와 전체 시스템의 활동을 모니터링하고 그들이 발생할 때, 내부와 외부 모두에서 의심 보안 위반을 탐지하는 데 사용한다. 그것은 시간이 지남에 따라 사용자의 행동 패턴을 학습하고 이러한 패턴에서 벗어나는 행동을 감지한다. 본 논문에서 알려진 시스템의 취약점 및 침입 시나리오에 대한 정보를 인코딩하는 데 사용할 수 있는 규칙 기반 구성 요소를 사용한다. 두 가지 방법을 통합하는 것은 침입 탐지 시스템 권한이 있는 사용자 또는 센서 침입 탐지 시스템 (IDS)에서 데이터를 수집 RFM 분석 방법론 및 모니터링을 사용하여 비정상적인 사용자 (권한이 없는 사용자)에 의해 침입뿐만 아니라 오용을 탐지하기위한 포괄적인 시스템을 만든다.

감시 시스템에서 궤적 분류를 이용한 이상 탐지 방법 (Anomaly Detection Method Based on Trajectory Classification in Surveillance Systems)

  • 서정훈;황지인;팔 아비쉑;이하은;고대식;송석일
    • Journal of Platform Technology
    • /
    • 제12권3호
    • /
    • pp.62-70
    • /
    • 2024
  • 최근의 감시 시스템은 카메라, 레이더 등 다양한 센서를 중복 사용하여 침입 탐지의 정확도를 향상시키려는 노력을 기울이고 있다. 그러나 야간, 악천후, 침입자의 위장 등으로 인해 카메라(RGB, Thermal) 센서를 통한 객체 인식이 정확하지 않을 때도 있다. 이러한 상황에서는 카메라나 레이더 센서를 통해 추출된 객체의 궤적을 활용하여 침입자를 탐지할 수 있다. 본 논문에서는 객체 인식이 어려운 환경에서 궤적 정보만을 이용하여 침입자를 탐지하는 방법을 제안한다. 제안하는 방법은 동물, 사람의 정상 및 비정상(침입, 배회) 궤적 데이터를 이용하여 LSTM-Attention 기반 궤적 분류 모델을 학습하고, 이 모델을 이용해서 사람의 비정상 궤적을 찾아내서 침입 탐지를 수행한다. 마지막으로, 제안하는 방법의 타당성을 실 데이터를 이용한 실험을 통해 입증한다.

  • PDF

엔트로피 기반의 이상징후 탐지 시스템 (An Anomalous Event Detection System based on Information Theory)

  • 한찬규;최형기
    • 한국정보과학회논문지:정보통신
    • /
    • 제36권3호
    • /
    • pp.173-183
    • /
    • 2009
  • 본 논문에서는 엔트로피에 기반한 이상징후 탐지 시스템을 제안한다. 엔트로피는 시스템의 무질서정도를 측정하는 지표로써, 이상징후 출현 시 네트워크의 엔트로피는 급증한다. 네트워크를 IP와 포트번호를 기준으로 분류하여, 패킷별로 역학을 관찰하고 엔트로피를 각각 측정한다. 분산서비스거부공격이나 웜, 스캐닝 등의 네트워크 공격 출현 시 패킷 교환과정이 정상적일 때와는 다르므로 엔트로피를 통하여 기존기법 보다 높은 탐지율로 이상징후를 탐지할 수 있다. 본 논문에서는 다수의 원과 서비스거부공격을 포함한 데이터 셋을 수집하여 제안기법을 검증하였다. 또한 지수평활법, Holt-winters 등의 시계열예측 기법과 주성분분석을 이용한 이상징후 탐지 기법과 정확도 측면에서 비교한다. 본 논문에서 제안한 기법으로 웜, 서비스거부공격 등의 이상징후 탐지에 있어 오탐지율을 낮출 수 있다.

Current concepts of vascular anomalies

  • Tae Hyung Kim;Jong Woo Choi;Woo Shik Jeong
    • 대한두개안면성형외과학회지
    • /
    • 제24권4호
    • /
    • pp.145-158
    • /
    • 2023
  • Vascular anomalies encompass a variety of malformations and tumors that can result in severe morbidity and mortality in both adults and children. Advances have been made in the classification and diagnosis of these anomalies, with the International Society for the Study of Vascular Anomalies establishing a widely recognized classification system. In recent years, notable progress has been made in genetic testing and imaging techniques, enhancing our ability to diagnose these conditions. The increasing sophistication of genetic testing has facilitated the identification of specific genetic mutations that help treatment decisions. Furthermore, imaging techniques such as magnetic resonance imaging and computed tomography have greatly improved our capacity to visualize and detect vascular abnormalities, enabling more accurate diagnoses. When considering reconstructive surgery for facial vascular anomalies, it is important to consider both functional and cosmetic results of the procedure. Therefore, a comprehensive multidisciplinary approach involving specialists from dermatology, radiology, and genetics is often required to ensure effective management of these conditions. Overall, the treatment approach for facial vascular anomalies depends on the type, size, location, and severity of the anomaly. A thorough evaluation by a team of specialists can determine the most appropriate and effective treatment plan.

FAULT DIAGNOSIS OF ROLLING BEARINGS USING UNSUPERVISED DYNAMIC TIME WARPING-AIDED ARTIFICIAL IMMUNE SYSTEM

  • LUCAS VERONEZ GOULART FERREIRA;LAXMI RATHOUR;DEVIKA DABKE;FABIO ROBERTO CHAVARETTE;VISHNU NARAYAN MISHRA
    • Journal of applied mathematics & informatics
    • /
    • 제41권6호
    • /
    • pp.1257-1274
    • /
    • 2023
  • Rotating machines heavily rely on an intricate network of interconnected sub-components, with bearing failures accounting for a substantial proportion (40% to 90%) of all such failures. To address this issue, intelligent algorithms have been developed to evaluate vibrational signals and accurately detect faults, thereby reducing the reliance on expert knowledge and lowering maintenance costs. Within the field of machine learning, Artificial Immune Systems (AIS) have exhibited notable potential, with applications ranging from malware detection in computer systems to fault detection in bearings, which is the primary focus of this study. In pursuit of this objective, we propose a novel procedure for detecting novel instances of anomalies in varying operating conditions, utilizing only the signals derived from the healthy state of the analyzed machine. Our approach incorporates AIS augmented by Dynamic Time Warping (DTW). The experimental outcomes demonstrate that the AIS-DTW method yields a considerable improvement in anomaly detection rates (up to 53.83%) compared to the conventional AIS. In summary, our findings indicate that our method represents a significant advancement in enhancing the resilience of AIS-based novelty detection, thereby bolstering the reliability of rotating machines and reducing the need for expertise in bearing fault detection.

프라이빗 블록체인 환경에서 생체인증과 위치기반을 통한 치매환자 배회행동 및 이상징후 탐지 기법 (Dementia Patient Wandering Behavior and Anomaly Detection Technique through Biometric Authentication and Location-based in a Private Blockchain Environment)

  • 한영애;강혁;이근호
    • 사물인터넷융복합논문지
    • /
    • 제8권5호
    • /
    • pp.119-125
    • /
    • 2022
  • 최근 고령화로 인한 치매환자의 증가로 그들의 배회행동과 실종예방을 위한 대책이 시급하다. 이러한 문제를 해결하기 위해 다양한 인증 방법과 위치 탐지 기법들이 소개되고 있으나 개인인증의 보안성 문제와 실내·외를 전반적으로 확인할 수 있는 시스템은 찾아보기 어려웠다. 본 연구에서는 프라이빗 블록체인 환경에서 손목 밴드 형태의 웨어러블 디바이스를 활용해 개인인증, 기본적 건강 상태 파악 및 실내·외의 전반적인 위치를 파악할 수 있는 시스템을 제안하고자 한다. 이 시스템에서 개인인증은 위변조가 어렵고 개인식별성이 높은 ECG를, 실내는 저전력, 비접촉 및 자동 송수신 방식으로 사용이 용이한 블루투스 비콘을, 실외는 GPS 위성의 의사거리 오차를 보정한 DGPS를 활용하여 치매환자의 위치를 파악함으로써 배회행동 및 이상징후를 탐지하고자 한다. 이를 통해 재가나 요양시설 등에서 생활하는 치매환자의 배회행동 및 이상징후 시 신속한 대처와 실종예방에 기여하고자 한다.

비정상행위 탐지를 위한 시각화 기반 네트워크 포렌식 (Anomaly Detection Using Visualization-based Network Forensics)

  • 조우연;김명종;박근호;홍만표;곽진;손태식
    • 정보보호학회논문지
    • /
    • 제27권1호
    • /
    • pp.25-38
    • /
    • 2017
  • 국가 주요 기반 시설을 포함하여 보안사고 발생 시 심각한 피해를 발생시킬 수 있는 산업 제어시스템의 특성에 의해 세계적으로 많은 보안 침해 사고가 발생하고 있다. 따라서 산업 제어시스템 네트워크에 오가는 트래픽은 감시되고, 분석되어 공격을 사전에 파악하거나 사고 이후 재빠른 대응을 수행할 수 있어야 한다. 본 논문에서는 제어시스템 프로토콜인 DNP3를 대상으로 모든 공격의 가능성을 갖는 트래픽들을 대상으로 합리적인 의심이 가능하도록 네트워크 포렌식 관점에서 시각화를 연구를 수행해 정상행위기반 룰을 정의하고 시각화 요구사항을 도출했다. 이를 기반으로 제어시스템 네트워크상에 캡처된 패킷 파일을 대상으로 DDoS와 같은 급작스런 네트워크 트래픽의 변화를 일으키는 경우 혹은 정상행위를 위반한 공격이 탐지 가능한 시각화 도구를 개발했고, 디지털본드 패킷과 같이 치명적인 공격이 포함된 네트워크상에서 성공적으로 비정상행위 탐지를 수행하였다.

적대적 생성 모델을 활용한 사용자 행위 이상 탐지 방법 (Anomaly Detection for User Action with Generative Adversarial Networks)

  • 최남웅;김우주
    • 지능정보연구
    • /
    • 제25권3호
    • /
    • pp.43-62
    • /
    • 2019
  • 한때, 이상 탐지 분야는 특정 데이터로부터 도출한 기초 통계량을 기반으로 이상 유무를 판단하는 방법이 지배적이었다. 이와 같은 방법론이 가능했던 이유는 과거엔 데이터의 차원이 단순하여 고전적 통계 방법이 효과적으로 작용할 수 있었기 때문이다. 하지만 빅데이터 시대에 접어들며 데이터의 속성이 복잡하게 변화함에 따라 더는 기존의 방식으로 산업 전반에 발생하는 데이터를 정확하게 분석, 예측하기 어렵게 되었다. 따라서 기계 학습 방법을 접목한 SVM, Decision Tree와 같은 모형을 활용하게 되었다. 하지만 지도 학습 기반의 모형은 훈련 데이터의 이상과 정상의 클래스 수가 비슷할 때만 테스트 과정에서 정확한 예측을 할 수 있다는 특수성이 있고 산업에서 생성되는 데이터는 대부분 정답 클래스가 불균형하기에 지도 학습 모형을 적용할 경우, 항상 예측되는 결과의 타당성이 부족하다는 문제점이 있다. 이러한 단점을 극복하고자 현재는 클래스 분포에 영향을 받지 않는 비지도 학습 기반의 모델을 바탕으로 이상 탐지 모형을 구성하여 실제 산업에 적용하기 위해 시행착오를 거치고 있다. 본 연구는 이러한 추세에 발맞춰 적대적 생성 신경망을 활용하여 이상 탐지하는 방법을 제안하고자 한다. 시퀀스 데이터를 학습시키기 위해 적대적 생성 신경망의 구조를 LSTM으로 구성하고 생성자의 LSTM은 2개의 층으로 각각 32차원과 64차원의 은닉유닛으로 구성, 판별자의 LSTM은 64차원의 은닉유닛으로 구성된 1개의 층을 사용하였다. 기존 시퀀스 데이터의 이상 탐지 논문에서는 이상 점수를 도출하는 과정에서 판별자가 실제데이터일 확률의 엔트로피 값을 사용하지만 본 논문에서는 자질 매칭 기법을 활용한 함수로 변경하여 이상 점수를 도출하였다. 또한, 잠재 변수를 최적화하는 과정을 LSTM으로 구성하여 모델 성능을 향상시킬 수 있었다. 변형된 형태의 적대적 생성 모델은 오토인코더의 비해 모든 실험의 경우에서 정밀도가 우세하였고 정확도 측면에서는 대략 7% 정도 높음을 확인할 수 있었다.

심층신경망 모델을 이용한 대기오염망 자료확정 알고리즘 연구 (A Study on the Air Pollution Monitoring Network Algorithm Using Deep Learning)

  • 이선우;양호준;이문형;최정무;윤세환;권장우;박지훈;정동희;신혜정
    • 융합정보논문지
    • /
    • 제11권11호
    • /
    • pp.57-65
    • /
    • 2021
  • 본 논문은 딥 러닝(Deep Learning)을 이용하여 대기오염측정망 데이터 중 특정 증상이 나타나는 이상 데이터를 탐지하는 방법을 제시한다. 기존 방법들은 일반적으로 시계열 데이터 내에서 기존과는 다른 특이한 패턴이 나타나는 데이터를 탐지하여 이상치로 분류하며, 이는 특정 증상만을 탐지하기에는 적합하지 않다. 본 논문에서는 주로 이미지의 전경 분리(Sementic Segmentation)에 사용되는 DeepLab V3+ 모델의 2차원 합성곱 신경망 구조를 1차원 구조로 변형하여 이미지 대신 여러 센서의 시계열 측정값을 입력받고 특정 증상이 나타나는 데이터를 탐지하도록 하는 방법을 제시한다. 또한, 데이터에 '조각별 집계 근사법(Piecewise Aggregate Approximation)'을 적용하여 잡음이 많은 대기오염측정망 데이터의 복잡도를 줄임으로써 성능을 높인다. 실험 결과를 통해 준수한 성능으로 이상치 탐지를 수행할 수 있음을 확인할 수 있다.