• 제목/요약/키워드: Anomaly Detect System

검색결과 111건 처리시간 0.026초

Design and evaluation of artificial intelligence models for abnormal data detection and prediction

  • Hae-Jong Joo;Ho-Bin Song
    • Journal of Platform Technology
    • /
    • 제11권6호
    • /
    • pp.3-12
    • /
    • 2023
  • In today's system operation, it is difficult to detect failures and take immediate action in the case of a shortage of manpower compared to the number of equipment or failures in vulnerable time zones, which can lead to delays in failure recovery. In addition, various algorithms exist to detect abnormal symptom data, and it is important to select an appropriate algorithm for each problem. In this paper, an ensemble-based isolation forest model was used to efficiently detect multivariate point anomalies that deviated from the mean distribution in the data set generated to predict system failure and minimize service interruption. And since significant changes in memory space usage are observed together with changes in CPU usage, the problem is solved by using LSTM-Auto Encoder for a collective anomaly in which another feature exhibits an abnormal pattern according to a change in one by comparing two or more features. did In addition, evaluation indicators are set for the performance evaluation of the model presented in this study, and then AI model evaluation is performed.

  • PDF

이상 침입 탐지를 위한 베이지안 네트워크 기반의 정상행위 프로파일링 (Normal Behavior Profiling based on Bayesian Network for Anomaly Intrusion Detection)

  • 차병래;박경우;서재현
    • 한국컴퓨터정보학회논문지
    • /
    • 제8권1호
    • /
    • pp.103-113
    • /
    • 2003
  • 프로그램 행위 침입 탐지 기법은 데몬 프로그램이나 루트 권한으로 실행되는 프로그램이 발생시키는 시스템 호출들을 분석하고 프로파일을 구축하여 침입을 효과적으로 탐지한다 시스템 호출을 이용한 이상 탐지는 단지 그 프로세스가 이상(anomaly)임을 탐지할 뿐 그 프로세스에 의해 영향을 받는 여러 부분에 대해서는 탐지하지 못하는 문제점을 갖는다. 이러한 문제점을 개선하는 방법이 베이지안 확률값 이용하여 여러 프로세스의 시스템 호출간의 관계를 표현하고, 베이지안 네트워크를 이용한 어플리케이션의 행위 프로파일링에 의해 이상 탐지 정보를 제공한다. 본 논문은 여러 침입 탐지 모델들의 문제점들을 극복하면서 이상 침입 탐지를 효율적으로 수행할 수 있는 베이지안 네트워크를 이용한 침입 탐지 방법을 제안한다 행위의 전후 관계를 이용한 정상 행위를 간결하게 프로파일링하며, 변형되거나 새로운 행위에 대해서도 탐지가 가능하다. 제안한 정상행위 프로파일링 기법을 UNM 데이터를 이용하여 시뮬레이션하였다.

  • PDF

가변 윈도우 기법을 적용한 통계적 공정 제어와 퍼지추론 기법을 이용한 소프트웨어 성능 변화의 빅 데이터 분석 (Big Data Analysis of Software Performance Trend using SPC with Flexible Moving Window and Fuzzy Theory)

  • 이동헌;박종진
    • 제어로봇시스템학회논문지
    • /
    • 제18권11호
    • /
    • pp.997-1004
    • /
    • 2012
  • In enterprise software projects, performance issues have become more critical during recent decades. While developing software products, many performance tests are executed in the earlier development phase against the newly added code pieces to detect possible performance regressions. In our previous research, we introduced the framework to enable automated performance anomaly detection and reduce the analysis overhead for identifying the root causes, and showed Statistical Process Control (SPC) can be successfully applied to anomaly detection. In this paper, we explain the special performance trend in which the existing anomaly detection system can hardly detect the noticeable performance change especially when a performance regression is introduced and recovered again a while later. Within the fixed number of sampling period, the fluctuation gets aggravated and the lower and upper control limit get relaxed so that sometimes the existing system hardly detect the noticeable performance change. To resolve the issue, we apply dynamically tuned sampling window size based on the performance trend, and Fuzzy theory to find an appropriate size of the moving window.

빅데이터 기반의 IoT 이상 장애 탐지 시스템 설계 (Design of Anomaly Detection System Based on Big Data in Internet of Things)

  • 나성일;김형중
    • 디지털콘텐츠학회 논문지
    • /
    • 제19권2호
    • /
    • pp.377-383
    • /
    • 2018
  • 사물인터넷(IoT) 서비스는 스마트 환경이 발전하면서 다양한 데이터를 생산하고 있다. 이 데이터는 사용자의 상황을 판단하는 중요한 데이터로 사용된다. 그렇기 때문에 센서의 이상 상태를 실시간으로 모니터링하고 이상 데이터를 탐지하는 것이 중요하다. 하지만 데이터 구조와 프로토콜이 다양하기 때문에 표준화된 데이터 구조로 변환하는 과정이 필요하다. 그럼으로써 데이터의 품질을 보장하고 정확한 분석을 통해 서비스의 품질까지 좋아지는 효과를 기대할 수 있다. 본 논문은 수집된 센서의 이상탐지를 위해 빅데이터 기반의 이상탐지 시스템을 제안한다. 제안한 시스템은 이상탐지를 위해 데이터 표준화 전처리와 시계열 기반의 이상탐지가 우수한 SVM(Support Vector Machine) 모델을 적용하였다. 실험에서는 전처리와 전처리되지 않은 데이터를 각각 학습시키고 비교하였다. 그 결과, 전처리된 데이터는 이상 장애를 정확히 탐지하고 예측하였다.

Multi-sensor data-based anomaly detection and diagnosis of a pumped storage hydropower plant

  • Sojin Shin;Cheolgyu Hyun;Seongpil Cho;Phill-Seung Lee
    • Structural Engineering and Mechanics
    • /
    • 제88권6호
    • /
    • pp.569-581
    • /
    • 2023
  • This paper introduces a system to detect and diagnose anomalies in pumped storage hydropower plants. We collect data from various types of sensors, including those monitoring temperature, vibration, and power. The data are classified according to the operation modes (pump and turbine operation modes) and normalized to remove the influence of the external environment. To detect anomalies and diagnose their types, we adopt a multivariate normal distribution analysis by learning the distribution of the normal data. The feasibility of the proposed system is evaluated using actual monitoring data of a pumped storage hydropower plant. The proposed system can be used to implement condition monitoring systems for other plants through modifications.

Active Response Model and Scheme to Detect Unknown Attacks

  • Kim, Bong-Han;Kim, Si-Jung
    • Journal of information and communication convergence engineering
    • /
    • 제6권3호
    • /
    • pp.294-300
    • /
    • 2008
  • This study was conducted to investigate what to consider for active response in the intrusion detection system, how to implement active response, and 6-phase response models to respond actively, including the active response scheme to detect unknown attacks by using a traffic measuring engine and an anomaly detection engine.

Cluster-based Deep One-Class Classification Model for Anomaly Detection

  • Younghwan Kim;Huy Kang Kim
    • Journal of Internet Technology
    • /
    • 제22권4호
    • /
    • pp.903-911
    • /
    • 2021
  • As cyber-attacks on Cyber-Physical System (CPS) become more diverse and sophisticated, it is important to quickly detect malicious behaviors occurring in CPS. Since CPS can collect sensor data in near real time throughout the process, there have been many attempts to detect anomaly behavior through normal behavior learning from the perspective of data-driven security. However, since the CPS datasets are big data and most of the data are normal data, it has always been a great challenge to analyze the data and implement the anomaly detection model. In this paper, we propose and evaluate the Clustered Deep One-Class Classification (CD-OCC) model that combines the clustering algorithm and deep learning (DL) model using only a normal dataset for anomaly detection. We use auto-encoder to reduce the dimensions of the dataset and the K-means clustering algorithm to classify the normal data into the optimal cluster size. The DL model trains to predict clusters of normal data, and we can obtain logit values as outputs. The derived logit values are datasets that can better represent normal data in terms of knowledge distillation and are used as inputs to the OCC model. As a result of the experiment, the F1 score of the proposed model shows 0.93 and 0.83 in the SWaT and HAI dataset, respectively, and shows a significant performance improvement over other recent detectors such as Com-AE and SVM-RBF.

시퀀스 유사도 기반 무인 비행체 이상 탐지 시스템 (Sequence Based Anomaly Detection System for Unmanned Aerial Vehicle)

  • 서강욱;김휘강
    • 정보보호학회논문지
    • /
    • 제32권1호
    • /
    • pp.39-48
    • /
    • 2022
  • 본 논문에서는 무인 비행체 내부 네트워크의 이상 징후를 탐지하는 시퀀스 기반 이상 탐지 시스템을 제안한다. 제안하는 이상 탐지 시스템은 무인 비행체가 지상 통제 시스템에 주기적으로 전송하는 상태 메시지 시퀀스들 간의 유사도를 측정하여 이상 징후를 탐지한다. 본 연구에서는 무인 비행체 내부 네트워크에서 수행 가능한 악의적인 메시지 주입 공격 세 가지를 정의하고, 해당 공격 기법들을 Pixhawk4 쿼드콥터에서 시뮬레이션하였다. 결과적으로, 제안하는 이상 탐지 시스템은 96% 이상의 정확도로 비정상 시퀀스를 탐지할 수 있었다.

Negative Selection 알고리즘 기반 이상탐지기를 이용한 이상행 위 탐지 (Anomaly behavior detection using Negative Selection algorithm based anomaly detector)

  • 김미선;서재현
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2004년도 춘계종합학술대회
    • /
    • pp.391-394
    • /
    • 2004
  • 인터넷의 급속한 확장으로 인해 네트워크 공격기법의 패러다임의 변화가 시작되었으며 새로울 공격 형태가 나타나고 있으나 대부분의 침입 탐지 기술은 오용 탐지 기술을 기반으로 하는 시스템이주를 이루고 있어 알려진 공격 유형만을 탐지하고, 새로운 공격에 능동적인 대응이 어려운 실정이다. 이에 새로운 공격 유형에 대한 탐지력을 높이기 위해 인체 면역 메커니즘을 적용하려는 시도들이 나타나고 있다. 본 논문에서는 데이터 마이닝 기법을 이용하여 네트워크 패킷에 대한 정상 행위 프로파일을 생성하고 생성된 프로파일을 자기공간화 하여 인체면역계의 자기, 비자기 구분기능을 이용해 자기 인식 알고리즘을 구현하여 이상행위를 탐지하고자 한다. 자기인식 알고리즘의 하나인 Negative Selection Algorithm을 기반으로 anomaly detector를 생성하여 자기공간을 모니터하여 변화를 감지하고 이상행위를 검출한다. DARPA Network Dataset을 이용하여 시뮬레이션을 수행하여 침입 탐지율을 통해 알고리즘의 유효성을 검증한다.

  • PDF

Anomaly Detection System for Solar Power Distribution Panels utilizing Thermal Images

  • Kwang-Seong Shin;Jong-Chan Kim;Seong-Yoon Shin
    • Journal of information and communication convergence engineering
    • /
    • 제22권2호
    • /
    • pp.159-164
    • /
    • 2024
  • This study aimed to develop an advanced anomaly-detection system tailored for solar power distribution panels using thermal imaging cameras to ensure operational stability. It addresses the imperative shift toward digitalized safety management in electrical facilities, transcending the limitations of conventional empirical methodologies. Our proposed system leverages a faster R-CNN-based artificial intelligence model optimized through meticulous hyperparameter tuning to efficiently detect anomalies in distribution panels. Through comprehensive experimentation, we validated the efficacy of the system in accurately identifying anomalies, thereby propelling safety protocols forward during the fourth industrial revolution. This study signifies a significant stride toward fortifying the integrity and resilience of solar power distribution systems, which is pivotal for adapting to emerging technological paradigms and evolving safety standards in the energy sector. These findings offer valuable insights for enhancing the reliability and efficiency of safety management practices and fostering a safer and more sustainable energy landscape.