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Abstract

This study aimed to develop an advanced anomaly-detection system tailored for solar power distribution panels using thermal

imaging cameras to ensure operational stability. It addresses the imperative shift toward digitalized safety management in

electrical facilities, transcending the limitations of conventional empirical methodologies. Our proposed system leverages a

faster R-CNN-based artificial intelligence model optimized through meticulous hyperparameter tuning to efficiently detect

anomalies in distribution panels. Through comprehensive experimentation, we validated the efficacy of the system in accurately

identifying anomalies, thereby propelling safety protocols forward during the fourth industrial revolution. This study signifies a

significant stride toward fortifying the integrity and resilience of solar power distribution systems, which is pivotal for adapting

to emerging technological paradigms and evolving safety standards in the energy sector. These findings offer valuable insights

for enhancing the reliability and efficiency of safety management practices and fostering a safer and more sustainable energy

landscape.

Index Terms: Anomaly Detection, Digitalization of Power Facilities, Faster R-CNN, Object Detection, Thermal Image

I. INTRODUCTION

Solar power distribution panels play a pivotal role in mod-

ern energy systems by ensuring the reliability and safety of

power supply. These panels are responsible for converting

high- or extra-high-voltage electricity from power plants or

substations into usable voltages for consumers, and for dis-

tributing power safely throughout the grid. However, main-

taining the safety and integrity of these electrical facilities

requires effective anomaly detection and response measures.

Traditional approaches to safety management often rely on

experience and subjectivity, which can be inefficient and

may not adequately address the potential risks.

Previous safety management methods have been predomi-

nantly reactive and manual, addressing issues only after they

occur. This reactive approach makes it challenging to respond

to anomalies before escalation, and preventive measures may

be limited. As the scale and complexity of power facilities

continue to increase, the limitations of traditional methods

have become more apparent.

Recent technological advancements have offered new pos-

sibilities for the safety management of power facilities. Digi-

tal technologies and artificial intelligence (AI) enable real-

time data collection and analysis, allowing faster and more

accurate anomaly detection. Systems utilizing sensors, such

as thermal imaging cameras, to monitor temperature varia-

tions within distribution panels, coupled with AI algorithms

for anomaly detection, are gaining prominence as innovative
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solutions for safety management.

In this context, this paper proposes a novel anomaly-detec-

tion system to enhance the stability of solar power distribu-

tion panels. By utilizing thermal imaging cameras and a

faster R-CNN-based AI model, we aim to effectively iden-

tify and address anomalies within distribution panels. In this

study, we sought to improve the safety and efficiency of

safety management practices in power facilities.

Based on these motivations and objectives, this paper dis-

cusses the design, implementation, and experimental results

of the proposed anomaly-detection system. This study is

anticipated to contribute to the advancement of safety man-

agement in power facilities, thereby enhancing safety and

reliability.

II. RELATED WORKS

Panthi et al. investigated methods for detecting anomalies

in power distribution systems using machine-learning tech-

niques and proposed effective methods for detecting anoma-

lies in power systems by applying various machine-learning

algorithms and data mining techniques [1-4].

Furthermore, Imenes et al. combined thermal imaging with

deep learning to detect faults in power systems. They used

thermal cameras to automatically detect faults in power sys-

tems by analyzing images using deep-learning algorithms [5-

8].

Syu et al. identified anomalies in power networks using AI

algorithms and immediate actions to enhance the safety of

power networks [9-11].

Additionally, studies have focused on developing data-

driven predictive models to detect equipment faults in power

systems in advance and optimize maintenance schedules to

enhance system reliability [13,14]. Moreover, notable

research involves the utilization of the Internet of things and

machine learning for real-time monitoring and anomaly

detection in power systems [15].

These related studies have proposed innovative approaches

for the safety management and reliability enhancement of

power facilities, contributing to strengthening the safety of

power systems alongside this study.

In this study, we utilized YOLOv5, which evolved from

YOLOv1 to YOLOv8 [16-18]. The YOLOv5 model consists

of two main components, the backbone and the head, with

the following details:

The backbone extracts feature maps from images; in our

case, we employed CSP-Darknet.

YOLOv5 offers four backbone variations ranging from the

smallest and lightest YOLOv5s to m, l, and x.

The head is responsible for locating objects based on the

extracted feature maps.

Initially, the anchor boxes were set and then utilized to

generate the final bounding boxes.

Similar to YOLOv3, the bounding boxes were generated at

three scales: small objects with 8-pixel information, medium

objects with 16-pixel information, and large objects with 32-

pixel information. Each scale employs three anchor boxes,

resulting in nine anchor boxes.

In this study, which focused on detecting anomalies in

solar power distribution boards using thermal images, we

trained the YOLOv5 model to differentiate various parts of

the thermal image corresponding to different components of

the system. Our study aimed at enhancing object detection

rates through hyperparameter tuning using YOLOv5.

The following is a summary of the architecture used in our

study:

• Backbone: CSP-Darknet53

• Neck: SPPF

• Head: YOLOv3 Head

This study focused on detecting anomalies in solar power

distribution boards by training with thermal images. We

aimed to classify the different parts of the thermal images

corresponding to various components of the system. Accord-

ingly, we utilized YOLOv5 and aimed to enhance the object

detection rates through hyperparameter tuning.

III. SYSTEM MODEL AND METHODS

Anomaly-detection systems for solar power distribution

panels integrate cutting-edge technologies with thermal

imaging, AI, and real-time monitoring to enhance the stabil-

ity, safety, and reliability of solar power distribution panels.

The key components and design considerations of the pro-

posed system are outlined below:

1) Thermal Imaging Sensors

High-resolution thermal imaging cameras are strategically

positioned to capture thermal data from solar power distribu-

tion panels. These sensors continuously monitor temperature

variations within the distribution panels, providing valuable

thermal images for anomaly detection.

2) Data Acquisition and Preprocessing

Raw thermal images captured by the sensors were trans-

mitted to a central processing unit for data acquisition.

Preprocessing techniques, such as noise reduction, image

enhancement, and normalization, were applied to ensure the

quality and consistency of the input data.

3) Artificial Intelligence Model Selection

The system utilizes YOLOv5, which was selected for its

superior performance in object detection tasks and ability to

handle various types of anomalies effectively.
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4) Training Data Preparation

To achieve the best learning outcomes, the dataset

included a minimum of 1,500 images per class and a mini-

mum of 10,000 instances (labeled objects) per class.

The dataset encompasses diverse thermal images repre-

senting different times, angles, and camera configurations to

accurately represent real-world scenarios.

5) Model Training and Optimization

The YOLOv5 model was trained on the prepared dataset,

starting with pretrained weights to accelerate convergence.

The training settings, including epochs, image size, batch

size, and hyperparameters, were carefully selected and opti-

mized to achieve the best performance without overfitting.

6) Real-time Anomaly Detection

Upon completion of training, the trained AI model was

deployed for real-time anomaly detection on the incoming

thermal images.

The model analyzed each image to identify the regions of

interest (ROIs) that exhibited abnormal temperature patterns,

indicating potential faults or anomalies within the distribu-

tion panels.

7) Alerting and Response Mechanism

The detected anomalies trigger immediate alerts to desig-

nated personnel through visual displays or notification sys-

tems.

Predefined response protocols, ranging from remote diag-

nostics to onsite inspection and maintenance, are initiated

based on the severity and nature of the anomaly.

8) Continuous Monitoring and Feedback Loop

The system operates in a continuous monitoring mode,

regularly updating its anomaly-detection capabilities based

on new data and feedback. Feedback mechanisms enable the

system to learn from past detections and improve its accu-

racy over time, enhancing the overall reliability of anomaly

detection.

By encompassing these components and design principles,

the proposed anomaly-detection system offers a comprehen-

sive solution for enhancing the stability, safety, and reliabil-

ity of solar power distribution panels.

Fig. 1 illustrates the process used in this study. The system

receives thermal images as the input, utilizes the YOLOv5

model to detect objects, displays bounding boxes around the

detected objects, and performs pixel mapping. Subsequently,

the components where the temperature increased are high-

lighted.

IV. RESULTS AND DISCUSSIONS

A. Optimization

In this study, optimization was performed to improve the

performance and computational efficiency, prevent overfit-

ting, and reduce the model size. The initial hyperparameters

in machine learning control various aspects of training, and

determining their optimal values can be challenging. Tradi-

tional methods, such as grid search, face issues, such as

increased computation, owing to the high-dimensional search

space, unknown correlations between dimensions, and the

cost associated with evaluating fitness at each point. There-

fore, genetic algorithms are utilized as suitable candidates

for initial hyperparameter searches because of their ability to

efficiently navigate complex search spaces.

Table 1 lists the hyperparameters and their respective opti-

mization ranges. Table 2 displays the evolution results of the

hyperparameters obtained over five iterations.

Fig. 2 shows the results of the training and validation pro-

cesses using the YOLOv5 model for various loss and perfor-

mance metrics. The graphs display the results over the

epochs, with the horizontal axis representing the epochs and

the vertical axis representing the values of the respective

metric. These graphs are useful for diagnosing the perfor-

mance of a machine-learning model and detecting overfitting

Fig. 1. Flowchart of object detection system for anomaly detection in solar

power distribution panels.
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or other issues.

• train/box_loss and val/box_loss: These losses measure

the accuracy of the bounding box location. Both the

training and validation losses tended to decrease as the

epochs progressed, indicating that the model was better

at predicting the locations of the objects.

• train/obj_loss and val/obj_loss: The object presence loss

indicates how well the model predicts the presence of an

object in a certain location. This value also decreased as

the number of epochs increased.

• Train/cls _loss and val/cls_loss: The classification loss

shows how accurately the model classifies the class of

the object within the bounding box. This loss also exhib-

ited a decreasing trend.

• Metrics/precision and metrics/recall: Precision is the

ratio of correctly included actual objects in the predicted

bounding boxes, and recall is the ratio of actual objects

that the model correctly detects. Both these metrics

maintain high values, indicating that the model performs

well in detecting and classifying objects.

• metrics/mAP_0.5 and metrics/mAP_0.5:0.95: The mean

average precision (mAP) is an important indicator that

reflects the average precision over several thresholds,

evaluating the overall performance of an object detection

model. mAP_0.5 refers to the mAP when the intersection

over union (IoU) threshold is 0.5, and mAP_0.5:0.95 is

the average mAP when the IoU increases from 0.5 to

0.95 in increments of 0.05. Both indicators initially

increase sharply and then maintain a stable level, indi-

cating that the model performs at a high level.

Overall, these graphs show that the performance of the

Table 1. Hyperparameter evolution list

No. Hyperparameters Optimization domain

1
lr: initial learning rate 

(SGD=1e-2, Adam=1e-3)
[1e-5, 1e-1]

2
lrf: final OneCycleLR learning rate 

(lr*lrf) 
[0.01, 1.0]

3
momentum: 

SGD momentum/Adam beat1 
[0.6, 0.98]

4
weight_decay: 

optimizer weight decay 5e-4 
[0.0, 0.001]

5
warmup_epochs: 

warmup epochs (fraction ok) 
[0.0, 5.0]

6
warmup_momentum: warmup initial 

momentum 
[0.0, 0.95]

7 warmup_bias_lr: warmup initial bias lr [0.0, 0.2]

8 box: box loss gain [0.02, 0.2]

9 cls: cls loss gain [0.02, 4.0]

10 cls_pw: cls BSELoss positive_weight [0.5, 2.0]

Table 2. Result of hyperparameter evolution

Epochs 100

Optimization algorithm Genetic algorithm

Number of evolutions 300

Fitness mAP

Hyperparameters T1 T2 T3 T4 T5

learning rate (lr) 0.01 0.0098 0.0092 0.0109 0.0086

lrf 0.01 0.0103 0.0107 0.0112 0.0108

momentum 0.937 0.9364 0.9359 0.98 0.9422

weight_decay 0.0005 0.0005 0.0004 0.0003 0.0004

warmup_epochs 3 3.4024 3.0464 3.4194 3.0996

warmup_momentum 0.8 0.8641 0.8951 0.95 0.8457

warmup_bias_lr 0.1 0.1001 0.1034 0.1058 0.1206

box 0.05 0.0578 0.0442 0.0478 0.0496

cls 0.5 0.4426 0.5006 0.6177 0.4831

cls_pw 1 1.044 0.9766 0.8184 0.9627

mAP 0.8572 0.869 0.8719 0.8774 0.8797

Fig. 2. Results of training and validation
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YOLOv5 model improved as it progressed through the

epochs, particularly through a decrease in loss functions and

an increase in mAP, demonstrating good training results.

Additionally, the similar values of losses and metrics

between the training and validation data suggest minimal

signs of overfitting.

V. CONCLUSIONS

Based on the experimental results, it is evident that the

proposed anomaly-detection system operates effectively

within solar power distribution panels. Object detection

using the YOLOv5 model demonstrated high accuracy and

rapid processing speed, enabling the identification of various

components within distribution panels. Furthermore, the

observation of decreasing loss functions and increasing mean

accuracy throughout the model training process validated the

stability and reliability of the system. An evaluation of the

performance of the anomaly-detection system confirmed its

applicability and potential benefits in real-world power facil-

ities, indicating significant advancements in safety and reli-

ability enhancement. Therefore, the findings of this study

open new horizons for safety management in solar power

distribution panels and suggest promising opportunities for

future applications in both the business and research

domains.
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