• Title/Summary/Keyword: Anodic oxide

Search Result 433, Processing Time 0.019 seconds

Novel Methods for Measuring the Surface Hardness of Anodic Oxide Films on Aluminum Alloy (알루미늄 합금 양극산화피막의 표면경도 측정법)

  • Moon, Sungmo
    • Journal of the Korean institute of surface engineering
    • /
    • v.53 no.1
    • /
    • pp.36-42
    • /
    • 2020
  • In this study, two novel methods to measure the surface hardness of anodic oxide films on aluminum alloys are reported. The first method is to impregnate oil-based ink into pores in the anodic oxide film and then to clean the ink on the surface using ethanol, resulting in an impregnation of inks only inside of the pores in anodic oxide film. The second method is to coat the anodic oxide film surface with thin Au layer less than 0.1 ?. Both the ink-impregnating method and Au-coating method provided clear indentation marks on the anodic oxide film surface when it was indented using a pyramidal-diamond penetrator. Thus, Vickers hardness of anodic oxide films on aluminium alloy could be measured successfully and precisely from the anodic film surface. In addition, advantages and disadvantages of the ink-impregnating method and Au-coating method for the measurement of surface hardness of anodic oxide films are discussed.

Anodic Oxidation Treatment Methods of Metals (금속의 양극산화처리 기술)

  • Moon, Sungmo
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.1
    • /
    • pp.1-10
    • /
    • 2018
  • Anodic oxidation treatment of metals is one of typical surface finishing methods which has been used for improving surface appearance, bioactivity, adhesion with paints and the resistances to corrosion and/or abrasion. This article provides fundamental principle, type and characteristics of the anodic oxidation treatment methods, including anodizing method and plasma electrolytic oxidation (PEO) method. The anodic oxidation can form thick oxide films on the metal surface by electrochemical reactions under the application of electric current and voltage between the working electrode and auxiliary electrode. The anodic oxide films are classified into two types of barrier type and porous type. The porous anodic oxide films include a porous anodizing film containing regular pores, nanotubes and PEO films containing irregular pores with different sizes and shapes. Thickness and defect density of the anodic oxide films are important factors which affect the corrosion resistance of metals. The anodic oxide film thickness is limited by how fast ions can migrate through the anodic oxide film. Defect density in the anodic oxide film is dependent upon alloying elements and second-phase particles in the alloys. In this article, the principle and mechanisms of formation and growth of anodic oxide films on metals are described.

Formation Behavior of Anodic Oxide Films on Al7075 Alloy in Sulfuric Acid Solution (황산용액에서 Al7075 합금 표면의 양극산화피막 형성거동)

  • Moon, Sungmo;Yang, Cheolnam;Na, Sangjo
    • Journal of the Korean institute of surface engineering
    • /
    • v.47 no.4
    • /
    • pp.155-161
    • /
    • 2014
  • The present work is concerned with the formation behavior of anodic oxide films on Al7075 alloy under a galvanostatic condition in 20 vol.% sulfuric acid solution. The formation behaviour of anodic oxide films was studied by the analyses of voltage-time curves and observations of colors, morphologies and thicknesses of anodic films with anodization time. Hardness of the anodic oxide films was also measured with anodization time and at different positions in the anodic films. Six different stages were observed with anodiziation time : barrier layer formation (stage I), pore formation (stage II), growth of porous films (stage III), abnormal rapid oxide growth (stage IV), growth of non-uniform oxide films (stage V) and breakdown of the thick oxide films under high anodic voltages (stage VI). Hardness of the anodic oxide films appeared to decrease with increasing anodization time and with the position towards the outer surface. This work provides useful information about the thickness, uniformity, imperfections and hardness distribution of the anodic oxide films formed on Al7075 alloy in sulfuric acid solution.

Surface Hardness Measurement of Anodic Oxide Films on AA2024 based an Ink-Impregnation Method

  • Moon, Sungmo;Rha, Jong-joo
    • Journal of the Korean institute of surface engineering
    • /
    • v.53 no.2
    • /
    • pp.80-86
    • /
    • 2020
  • This paper is concerned with type of imperfections present within the anodic oxide films on AA2024 and surface hardness of the anodic film measured after ink-impregnation. The anodic oxide films were formed for 25 min at 40 mA/㎠ and 15±0.5℃ and 300 rpm of magnet stirring rate in 20% sulfuric acid solution. The ink-impregnation allows clear observations of not only the imperfections within the anodic oxide films but also an indentation mark on the oxide film surface made by a pyramidal-diamond penetrator for the hardness measurement. There were observed four different regions in the anodic oxide films on AA2024 and the surface hardness of the anodic oxide films appeared to be crucially dependent on the type of defects, showing 60~100 Hv on the oxide surface region I with large size black defect, 100~140 Hv on the oxide surface region II with large size grey defect, 140~170 Hv on the oxide surface region III with mall size black and/or grey defects and 170~190 Hv on the oxide surface region IV without defects. The pyramidal indentation marks were observed to be distorted in the regions with a large size black and grey defects, while no distortion of the indentation mark was observed in the regions with small size defects and without visible defects.

TEM Study on the HgCdTe/Anodic oxide/ZnS Interfaces (투과전자현미경에 의한 HgCdTe/양극산화막/ZnS 계면 특성에 관한 연구)

  • 정진원;김재묵;왕진석
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.9
    • /
    • pp.121-127
    • /
    • 1995
  • We have analyzed the double insulating layer consisting of anodic oxide and ZnS through TEM experiments. The use of double insulating layer for HgCdTe surface passivation is one of the promising passivation method which has been recently studied deeply and the double insulating layer is formed by the evaporation of ZnS on the top of anodic oxide layer grown in H$_{2}$O$_{2}$ electrolyte. The structure of anodic oxide layer on HgCdTe is amorphous but the structure of oxide layer after the evaporation of ZnS has been changed to micro-crystalline. The interface layer of 150.angs. thickness has been found between ZnS and anodic oxide layer and is estimated to be ZnO layer. The results of analysis on the chemical components of ZnS, the interface layer and anodic oxide layer have showed that Zn has diffused into the anodic oxide layer deeply while Hg has been significantly decreased from HgCdTe bulk to the top of oxide layer. The formation of ZnO interface layer and the change of structure of anodic oxide layer after the evaporation of ZnS are estimated to be defects or to induce the defects which might possibly affect the increase of the positive fixed charges shown in C-V measurements of HgCdTe MIS.

  • PDF

Preparation of Tantalum Anodic Oxide Film in Citric Acid Solution - Evidence and Effects of Citrate Anion Incorporation

  • Kim, Young-Ho;Uosaki, Kohei
    • Journal of Electrochemical Science and Technology
    • /
    • v.4 no.4
    • /
    • pp.163-170
    • /
    • 2013
  • Tantalum anodic oxide film was prepared in citric acid solution of various concentrations and the prepared Ta anodic oxide film was characterized by various electrochemical techniques and X-ray photoelectron spectroscopy (XPS). The prepared Ta anodic oxide film showed typical n-type semiconducting properties and the dielectric properties were strongly dependent on the citric acid concentration. The variation of electrochemical and electronic properties was explained in terms of electrolyte anion incorporation into the anodic oxide film, which was supported by XPS measurements.

Simple Preparation of One-dimensional Metal Selenide Nanomaterials Using Anodic Aluminum Oxide Template

  • Piao, Yuanzhe
    • Journal of Electrochemical Science and Technology
    • /
    • v.3 no.1
    • /
    • pp.35-43
    • /
    • 2012
  • Highly ordered and perforated anodic aluminum oxide membranes were prepared by anodic oxidation and subsequent removal of the barrier layer. By using these homemade anodic aluminum oxide membranes as templates, metal selenide nanowires and nanotubes were synthesized. The structure and composition of these one-dimensional nanomaterials were studied by field emission scanning electron microscopy as well as transmission electron microscopy and energy dispersive X-ray spectroscopy. The growth process of metal selenide inside anodic aluminum oxide channel was traced by investigating the series of samples using scanning electron microscopy after reacting for different times. Straight and dense copper selenide and silver selenide nanowires with a uniform diameter were successfully prepared. In case of nickel selenide, nanotubes were preferentially formed. Phase and crystallinity of the nanostructured materials were also investigated.

A Study on the Infrared Radiation Properties of Anodized Aluminum (양극산화된 알루미늄의 적외선 복사특성 연구)

  • 강병철;최정진;김기호
    • Journal of the Korean institute of surface engineering
    • /
    • v.35 no.3
    • /
    • pp.149-157
    • /
    • 2002
  • Spectral emissivity depends on the surface conditions of the materials. The mechanisms that affect the spectral emissivity in anodic oxide films on aluminum were investigated. The aluminum specimens were anodized in a sulfuric acid solution and the thickness of the resulting oxide film formed changed with the anodizing time. FT-IR spectrum analysis identified the anodic oxide film as boehmite ($Al_2$$O_3$.$H_2$O). Both the infrared emisivity and reflectivity of the anodized aluminum were affected by the structure of the anodic oxide film because Al-OH and Al-O-Al have a pronounced absorption band in the infrared region of the spectrum. The presence of an anodic oxide film on aluminum caused a rapid drop in the infrared reflectivity. An aluminum surface in the clean state had an emissivity of approximately 0.2. However, the infrared emissivity rapidly increased to 0.91 as the thickness of the anodic oxide film increased.

Anodizing science of valve metals

  • Moon, Sungmo
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.96.1-96.1
    • /
    • 2017
  • This presentation introduces anodizing science of typical valve metals of Al, Mg and Ti, based on the ionic transport through the andic oxide films in various electrolyte compositions. Depending on the electrolyte composition, metal ions and anions can migrate through the andic oxide film without its dielectric breakdown when point defects are present within the anodic oxide films under high applied electric field. On the other hand, if anodic oxide films are broken by local joule heating due to ionic migration, metal ions and anions can migrate through the broken sites and meet together to form new anodic films, known as plasma electrolytic oxidation (PEO) treatment. In this presentation, basics of conventional anodizing and PEO methods are introduced in detail, based on the ionic migration and movement mechanism through anodic oxide films by point defects and by local dielectric breakdown of anodic oxide films.

  • PDF

Electrochemical Thinning for Anodic Aluminum Oxide and Anodic Titanium Oxide

  • Lee, In-Hae;Jo, Yun-Kyoung;Kim, Yong-Tae;Tak, Yong-Sug;Choi, Jin-Sub
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.5
    • /
    • pp.1465-1469
    • /
    • 2012
  • For given electrolytes, different behaviors of anodic aluminum oxide (AAO) and anodic titanium oxide (ATO) during electrochemical thinning are explained by ionic and electronic current modes. Branched structures are unavoidably created in AAO since the switch of ionic to electronic current is slow, whereas the barrier oxide in ATO is thinned without formation of the branched structures. In addition, pore opening can be possible in ATO if chemical etching is performed after the thinning process. The thinning was optimized for complete pore opening in ATO and potential-current behavior is interpreted in terms of ionic current-electronic current switching.