DOI QR코드

DOI QR Code

Electrochemical Thinning for Anodic Aluminum Oxide and Anodic Titanium Oxide

  • Lee, In-Hae (Department of Chemical Engineering, Inha University) ;
  • Jo, Yun-Kyoung (Department of Chemical Engineering, Inha University) ;
  • Kim, Yong-Tae (Department of Chemical Engineering, Inha University) ;
  • Tak, Yong-Sug (Department of Chemical Engineering, Inha University) ;
  • Choi, Jin-Sub (Department of Chemical Engineering, Inha University)
  • Received : 2012.01.06
  • Accepted : 2012.01.31
  • Published : 2012.05.20

Abstract

For given electrolytes, different behaviors of anodic aluminum oxide (AAO) and anodic titanium oxide (ATO) during electrochemical thinning are explained by ionic and electronic current modes. Branched structures are unavoidably created in AAO since the switch of ionic to electronic current is slow, whereas the barrier oxide in ATO is thinned without formation of the branched structures. In addition, pore opening can be possible in ATO if chemical etching is performed after the thinning process. The thinning was optimized for complete pore opening in ATO and potential-current behavior is interpreted in terms of ionic current-electronic current switching.

Keywords

References

  1. Suh, J. S.; Lee, J. S. Appl. Phys. Lett. 1999, 75, 2047. https://doi.org/10.1063/1.124911
  2. Shingubara, S.; Nanopart, J. Res. 2003, 5, 17.
  3. Wang, X.; Han, G.-R. Microelec. Eng. 2003, 66, 166. https://doi.org/10.1016/S0167-9317(03)00042-X
  4. Thompson, G. E.; Furneaux, R. C.; Wood, G. C.; Richardson, J. A.; Goode, J. S. Nature 1978, 272, 433. https://doi.org/10.1038/272433a0
  5. Jessensky, O.; Müller, F.; Gosele, U. Appl. Phys. Lett. 1998, 72, 1173. https://doi.org/10.1063/1.121004
  6. Li, A. P.; Muller, F.; Bimer, A.; Nielsch, K.; Gosele, U. J. Appl. Phys. 1998, 84, 6023. https://doi.org/10.1063/1.368911
  7. Gong, D.; Grimes, C. A.; Varghese, O. K.; Hu, W.; Singh, R. S.; Chen, Z.; Dickey, E. C. J. Mater. Res. 2001, 16, 3331. https://doi.org/10.1557/JMR.2001.0457
  8. Ruan, C.; Paulose, M.; Varghese, O. K.; Mor, G. K.; Grimes, C. A. J. Phys. Chem. B 2005, 109, 15754. https://doi.org/10.1021/jp052736u
  9. Mohamed, A. E.; Rohani, S. Energy Environ. Sci. 2011, 4, 1065. https://doi.org/10.1039/c0ee00488j
  10. Paulose, M.; Shankar, K.; Yoriya, S.; Prakasam, H. E.; Varghese, O. K.; Mor, G. K.; Latempa, T. A.; Fitzgerald, A.; Grimes, C. A. J. Phys. Chem. B 2006, 110, 16179. https://doi.org/10.1021/jp064020k
  11. Tian, M.; Xu, S.; Wang, J.; Kumar, N.; Wertz, E.; Li, Q.; Campbell, P. M.; Chan, M. H. W.; Mallouk, T. E. Nano Letters 2005, 5, 697. https://doi.org/10.1021/nl0501112
  12. Jo, T.; Jung, I.; Lee, I.; Choi, J.; Tak, Y. Electrochem. Commun. 2010, 12, 616. https://doi.org/10.1016/j.elecom.2010.02.013
  13. Furneaux, R. C.; Rigby, W. R.; Davidson, A. P. Nature 1989, 337, 147. https://doi.org/10.1038/337147a0
  14. Zhao, X.; Seo, S.-K.; Lee, U.-J.; Lee, K.-H. J. Electrochem. Soc. 2007, 154, C553. https://doi.org/10.1149/1.2759780
  15. Santos, A.; Vojkuvka, L.; Pallares, J.; Ferre-Borrull, J.; Marsal, L. F. J. Electroanal. Chem. 2009, 632, 139. https://doi.org/10.1016/j.jelechem.2009.04.008
  16. Kant, K.; Losic, D. Phys. Status Solidi RRL 2009, 3, 139. https://doi.org/10.1002/pssr.200903087
  17. Yuan, J. H.; Chen, W.; Hui, R. J.; Hu, Y. L.; Xia, X. H. Electrochim. Acta 2006, 51, 4589. https://doi.org/10.1016/j.electacta.2005.12.044
  18. Chen, W.; Wu, J.-S.; Yuan, J.-H.; Xia, X.-H.; Lin, X.-H. J. Electroanal. Chem. 2007, 600, 257. https://doi.org/10.1016/j.jelechem.2006.10.022
  19. Choi, J.; Wehrspohn, R. B.; Lee, J.; Gösele, U. Electrochim. Acta 2004, 49, 2645. https://doi.org/10.1016/j.electacta.2004.02.015
  20. Zhu, X.-F.; Song, Y.; Liu, L.; Wang, C.-Y.; Zheng, J.; Jia, H.-B.; Wang, X.-L. Nanotechnology 2009, 20, 475303. https://doi.org/10.1088/0957-4484/20/47/475303
  21. Masuda, H.; Fukuda, K. Science 1995, 268, 1466. https://doi.org/10.1126/science.268.5216.1466
  22. Lim, J. H.; Hong, S.-Y.; Kang, S. J.; Doh, H.-J.; Song, J.; Choi, J. R.; Chung, K.-H.; Choi, J. Electrochem. Commun. 2009, 11, 2141. https://doi.org/10.1016/j.elecom.2009.09.015
  23. Albella, J. M.; Montero, I.; Martinez-Duart, J. M. Electrochim. Acta 1987, 32, 255. https://doi.org/10.1016/0013-4686(87)85032-6
  24. Vrublevsky, I.; Jagminas, A.; Schreckenbach, J.; Goedel, W. A. Appl. Surf. Sci. 2007, 253, 4680. https://doi.org/10.1016/j.apsusc.2006.10.038

Cited by

  1. A Highly Controllable Electrochemical Anodization Process to Fabricate Porous Anodic Aluminum Oxide Membranes vol.10, pp.1, 2015, https://doi.org/10.1186/s11671-015-1202-y
  2. Combined mild and hard novel fabrication approach for nanoporous membrane vol.41, pp.10, 2019, https://doi.org/10.1007/s40430-019-1940-3