• Title/Summary/Keyword: Anisotropy Factor

Search Result 102, Processing Time 0.027 seconds

Analysis on the Effect of Material and Forming Conditions on the Cup Earing by Taguchi Method (실험계획법을 이용한 컵 귀발생의 영향인자 해석)

  • 정기조
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.30.1-33
    • /
    • 1999
  • Finite element simulation with experimental analysis of Taguchi's orthogonal array was carried out to know the effects of material and forming parameters on the cup earing and skewness. It was revealed that the planar anisotropy was the most influencing factor in the cup ear formation whereas blank holding force and material properties such as strength and thickness deviation at the coil edge had a relatively high effect on the cup skewness.

  • PDF

Photoinduced Anisotropy and Reorientation of Anisotropic Axis in Amorphous $As_2S_3$ Thin Film (비정질 $As_2S_3$ 박막의 광유도 비등방성과 비등방축의 가역성)

  • 김향균
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 1990.02a
    • /
    • pp.162-166
    • /
    • 1990
  • Photoinduced anisotropy (PIA) in amorphous As2S3 (a-As2S3 ) thin film, deposited by vacuum evaporation, is investigated. PIA is induced by linearly polarized Ar+ laser beam (λ=514.5nm) and probed by weak Ar+ laser (λ=514.5nm) and He-Ne laser (λ=632.8nm) beam through the crossed analyzer. Keeping pump beam intensity constantly, rotation of pump beam polarization direction induces reorientation phenomina of anisotropic axis. Introducing directional factor into simplified 3-level system, which is used to analyze photodarkening phenomina, an analytical expression of PIA is derived. Temporal behavior of PIAand its reorientation phenomina are investigated andcompared with theory. In the experiment pump beam intensity is 100mW/$\textrm{cm}^2$ and thickness of a-As2S3 thin film is 3${\mu}{\textrm}{m}$. In those condition, time constant of photoinduced anisotropy obtained by method of least square curve fitting is 4.0$\times$10-2sec-1. The time constant of PIA we obtained is larger than that of photodarkening, 2.8$\times$10-2sec-1.

  • PDF

The study on effects of porosity grain size, magnetization and anisotropy field on the properties of ferromagnetic resonance (다결정 Mg-페라이트의 기공율, 입경, 포화 자화 및 이방성 자기장이 강자성 공명 특성에 미치는 영향 연구)

  • 김진호;주승기;최덕균
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.1
    • /
    • pp.97-102
    • /
    • 1995
  • The ferromagnetic resonance properties of Mg ferrites which have various porosity grain size, and saturation magnetization are measured at one frequency. This allows a determination of the anisotropy field(Ha). The saturation magnetization multiplied by porosity is the resonance magnetic field. As the saturation magnetization increases, the linewidth decerases due to decrement of magnetic inhomogenity in sample. the porosity is a major factor broadening the linewidth for Mg ferrite when porosity is more thatn 6%, and the anisotropy field is dominant when porosity is less than 6%.

  • PDF

Effects of Material Anisotropy on Ultrasonic Beam Propagation: Diffraction and Beam Skew

  • Jeong, Hyun-Jo;Schmerr, W.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.26 no.3
    • /
    • pp.198-205
    • /
    • 2006
  • The necessity of nondestructively inspecting austenitic steels, fiber-reinforced composites, and other inherently anisotropic materials has stimulated considerable interest in developing beam models for anisotropic media. The properties of slowness surface playa key role in the beam models based on the paraxial approximation. In this paper, we apply a modular multi-Gaussian beam (MMGB) model to study the effects of material anisotropy on ultrasonic beam profile. It is shown that the anisotropic effects of beam skew and excess beam divergence enter into the MMGB model through parameters defining the slope and curvature of the slowness surface. The overall beam profile is found when the quasilongitudinal(qL) beam propagates in the symmetry plane of transversely isotropic austenitic steels. Simulation results are presented to illustrate the effects of these parameters on ultrasonic beam diffraction and beam skew. The MMGB calculations are also checked by comparing the anisotropy factor and beam skew angle with other analytical solutions.

A Study on the Ferromagnetic Resonance of FeNb Thin Films (FeNb 박막의 강자성 공명 연구)

  • Lim, Woo-Young;Baek, Jong-Sung;Lee, Soo-Hyung
    • Journal of the Korean Magnetics Society
    • /
    • v.14 no.4
    • /
    • pp.120-126
    • /
    • 2004
  • In order to understand the temperature dependence of magnetic properties of $F_{84}Nb_{16}$(wt.%) thin films, ferromagnetic resonance experiments have been carried out. The ferromagnetic resonance spectra for all temperatures consist of several volume modes and one (or two) surface modes. It is suggested that both surface of the film have a perpendicular hard axis to the film plane (negative surface magnetic anisotropy). Saturation magnetization coincides with the Block's T$\^$2/3/ and spectroscopic splitting factor is almost constant in the temperature range from 113 K to 293 K. The surface magnetic anisotropy constant K$\_$s2/ of the film-substrate interface increased with decreasing temperature in the temperature range from 233 K to 293 K. The surface magnetic anisotropy constant K$\_$s1/ of the air-substrate interface decreased from -0.322 erg/$\textrm{cm}^2$ to -0.394 erg/$\textrm{cm}^2$ as the temperature decreased to 253 K and was almost constant below 233 K.233 K.

A study on the magnetic properties and microstructure of spin-valve type multilayer for giant magnetoresistance (스핀밸브형 거대자기저항 다층박막의 자기적 특성 및 미세구조에 관한 연구)

  • 노재철;이두현;이명신;윤대호;서수정
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.1
    • /
    • pp.73-82
    • /
    • 1998
  • The exchange anisotropy is the unidirectional magnetic anisotropy which comes from exchange interaction between antiferromagnetic layer and ferromagnetic layer. The application of this phenomenon to MR read head and spin-valve type GMR (Giant Magnetoresistance) head has been studied extensively. In our study, we intended to apply exchange anisotropy of NiO/NiFe bilayer to spin-valve type GMR element. Above all, we studied the exchange anisotropy of NiO/NiFe bilayer, and focused especially on the effect of NiO deposition condition. And we found that Ar pressure during NiO deposition was crucial factor for the exchange anisotropy of NiO/NiFe bilayer. The lower the Ar pressure is, the better the characteristics of exhange anisotropy is. Then, we applied this optimum condition of NiO/NiFe bilayer to spin-valve type GMR element. Finally we got spin-valve type GMR element which had 3.6 % MR ratio, 16 Oe switching field, and 0.25 %/Oe sensitivity.

  • PDF

A Study on the Magnetic Properties and Microstructures of Ni-Fe/NiO Bilayers with Various Ar Presure in NiO Deposition (NiO 증착시의 Ar 압력 변화에 따른 Ni-Fe/NiO 이층막의 자기적특성과 미세구조에 대한 연구)

  • 노재철;이두현;김용성;서수정;박경수
    • Journal of the Korean Magnetics Society
    • /
    • v.8 no.6
    • /
    • pp.369-373
    • /
    • 1998
  • The exchange anisotropy between NiO antiferromagnetic layer and NiFe ferromagnetic layer has been investigated in NiFe(10 nm)/NiO(60 nm) formed by magnetron sputtering. The NiO films were sputtered from nickel oxide using R. F. poser and NiFe, Ta were deposited using D. C. power under Ar atmosphere. Above all. we studied the exchange anisotropy of Ni-Fe/NiO bilayer, and focused especially on the effect of NiO depostion condition. Our experimental data showed that the dominant factor for determining the exchange anisotropy properties was the Ar pressure during NiO deposition. The better exchange anisotropy properties were found when the NiO film was deposited at low Ar pressure probably due to the flatten interface and the epitaxial tendency of NiO grains and NiFe grains. However, as Ar pressure increased, interfacial diffusion at NiFe/NiO interface and oxygen content of NiO film increase, and consequently reduced the exchange anisotropy. We concluded that the flatten interface and relatively low oxygen content of NiO layer are dominant factors for the enhancement of the exchange anisotropy in NiFe/NiO bilayer.

  • PDF

Effects of Energetic Disorder and Mobility Anisotropy on Geminate Electron-hole Recombination in the Presence of a Donor-Acceptor Heterojunction

  • Wojcik, Mariusz;Michalak, Przemyslaw;Tachiya, M.
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.3
    • /
    • pp.795-802
    • /
    • 2012
  • Geminate electron-hole recombination in organic solids in the presence of a donor-acceptor heterojunction is studied by computer simulations. We analyze how the charge-pair separation probability in such systems is affected by energetic disorder of the media, anisotropy of charge-carrier mobilities, and other factors. We show that in energetically disordered systems the effect of heterojunction on the charge-pair separation probability is stronger than that in idealized systems without disorder. We also show that a mismatch between electron and hole mobilities reduces the separation probability, although in energetically disordered systems this effect is weaker compared to the case of no energetic disorder. We demonstrate that the most important factor that determines the charge-pair separation probability is the ratio of the sum of electron and hole mobilities to the rate constant of recombination reaction. We also consider systems with mobility anisotropy and calculate the electric field dependence of the charge-pair separation probability for all possible orientations of high-mobility axes in the donor and acceptor phases. We theoretically show that it is possible to increase the charge-pair separation probability by controlling the mobility anisotropy in heterojunction systems and in consequence to achieve higher efficiencies of organic photovoltaic devices.

Origin of the Initial Permeabiliy of Ni0.8-xZn0.2CoxFe2O4+δ Ferrite (Ni0.8-xZn0.2CoxFe2O4+δ조성 페라이트의 투자율 변화 기구)

  • 안용운;김종령;오영우
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.1
    • /
    • pp.46-51
    • /
    • 2004
  • The cause for the variation of the initial permeability according to the Co substitution of Ni-Zn ferrite used in the LC resonance filter for the power line communication is studied. The initial permeability decreases as the quantity of Co diminishes, and the saturation magnetization increases as the quantity increases. Because the sintering density and the microstructure of ferrite show little change, the variation of the initial permeability can't be explained by the density, microstructure nor the saturation magnetization factor. The magnetocrystalline anisotropy increases, similar with the saturation magnetization, as the quantity of Co increases. The increase of magnetocrystalline anisotropy value makes the domain wall energy grow, which leads to the decrease of the initial permeability, because there's linear law between the magnetocrystalline anisotropy and the domain wall energy. The resonance frequency to Co substitution moved to high frequency band, due to the close relationship with domain wall energy, Initial permeability decreaed a little with an increase of Co contents, but resonace frequency moved to high frequency band. as a result of that, when Co was added 0.05 mol, initial permeability and resonace frequency was 75 and 25 MHz respectively.

Anisotropic superconductivity of high quality FeSe1-x Single crystal

  • Kwon, Chang Il;Ok, Jong Mok;Kim, Jun Sung
    • Progress in Superconductivity and Cryogenics
    • /
    • v.16 no.4
    • /
    • pp.26-30
    • /
    • 2014
  • We investigate the upper critical field anisotropy ${\Gamma}_H$ and the magnetic penetration depth anisotropy ${\Gamma}_{\lambda}$ of a high-quality $FeSe_{1-x}$ single crystal using angular dependent resistivity and torque magnetometry up to 14 T. High quality single crystals of $FeSe_{1-x}$ were successfully grown using $KCl-AlCl_3$ flux method, which shows a sharp superconducting transition at $T_C{\sim}9K$ and a high residual resistivity ratio of ~ 25. We found that the anisotropy ${\Gamma}_H$ near $T_C$ is a factor of two larger than found in the poor-quality crystals, indicating anisotropic 3D superconductivity of $FeSe_{1-x}$. Similar to the 1111-type Fe pnictides, the anisotropies ${\Gamma}_{\lambda}$ and ${\Gamma}_H$ show distinct temperature dependence; ${\Gamma}_H$ decreases but ${\Gamma}_{\lambda}$ increases with lowering temperature. These behaviors can be attributed to multi-band superconductivity, but different from the case of $MgB_2$. Our findings suggest that the opposite temperature dependence of ${\Gamma}_{\lambda}$ and ${\Gamma}_H$ is the common properties of Fe-based superconductors.