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Effects of Material Anisotropy on Ultrasonic Beam Propagation:
Diffraction and Beam Skew
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Abstract

The necessity of nondestructively inspecting austenitic steels, fiber-reinforced composites, and other

inherently anisotropic materials has stimulated considerable interest in developing beam models for anisotropic

media. The properties of slowness surface play a key role in the beam models based on the paraxial
approximation. In this paper, we apply a modular multi-Gaussian beam (MMGB) model to study the effects of
material anisotropy on ultrasonic beam profile. It is shown that the anisotropic effects of beam skew and

excess beam divergence enter into the MMGB model through parameters defining the slope and curvature of

the slowness surface. The overall beam profile is found when the quasilongitudinal (qL) beam propagates in the

symmetry plane of transversely isotropic austenitic steels. Simulation results are presented to illustrate the
effects of these parameters on ultrasonic beam diffraction and beam skew. The MMGB calculations are also
checked by comparing the anisotropy factor and beam skew angle with other analytical solutions.
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1. Introduction

Multi-Gaussian beam (MGB) models can be
used to describe the propagation of ultrasonic
beams from planar or focused transducers in a
variety of testing situations (Schmerr, 2000;
Rudolph, 1999; Song et al., 2004; Kim et al.,
2004). One of the attractive features of MGB
models is that they are numerically very efficient.
This is because these models rely on the
small number (10-15) of

Gaussian beams whose properties can be described

superposition of a

in analytical terms even after propagation through
general anisotropic media and after interactions
with multiple curved interfaces. The MGB models
also form an important part of more complete
ultrasonic measurement models that can simulate

the measured response of defects. In these

measurement models, the MGB models are used
to predict diffraction correction terms which
account for the effects of the acoustic wave fields
as they travel from the transducer to the defect
and back. (Kim et al. 2004; Lopez-Sanchez
2006). As the number of interfaces increases,
however, the analytical expressions for the
amplitude and phase of a Gaussian beam become
increasingly complex. Modular multi-Gaussian
beam (MMGB) models (Schmerr and Sedov
2003) have been developed as an alternative
approach. The MMGB model

efficient formulation for ultrasound propagation

provides an

because of its modular matrix form after multiple

interface interactions. This modular way of
expressing the solution is very convenient to
generalize for N transmissions/reflections by

representing the propagating Gaussian amplitude
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and phase in terms of the global matrices for
the entire set of multiple propagation and
transmission/reflection MMGB

models were used to calculate the ultrasonic beam

matrices. The

profiles for a multilayered isotropic medium with
interface curvatures (Huang et al. 2005) and for a
contact/angle beam testing (Jeong et al. 2005).
The necessity of nondestructively inspecting
austenitic steels, fiber-reinforced composites, and
other inherently anisotropic materials has stimulated
considerable interest in wave propagation in
anisotropic media. The properties of slowness
surface play a key role in the beam models based
on the paraxial approximation. The essential
feature of this approximation is a Taylor series
expansion of the slowness surface in the vicinity
of the propagation direction. It is well known that
the coefficients of the first- and second-order
terms in the expansion of the slowness surface
govern the beam skew and divergence
respectively. The parameters A and B define the
rate of change of slowness with propagation
direction, determine the group
velocity and its direction. This effect is often

referred to as beam skew. The parameters C, D,

and, hence,

and E define the curvatures of slowness surface.
As will be seen, these will determine the rate of
divergence or convergence of the beam due to
diffraction. Methods for calculating the group
velocity components to determine beam skewing
effects are readily available. The beam skew

A%+ B’+1 and the
group velocity is v A%+ B*+1 larger than the

phase velocity. The fact that the diffraction in an
anisotropic material is related to that in an

angle is given by cosy =1

isotropic material by an “anisotropy factor” has
been noted by several authors (Newberry and
Thompson, 1989; Norris, 1987; Papadakis, 1964
and 1966). This factor can be thought of as the
equivalent distance needed to be traveled in an
isotropic medium to achieve the same diffraction
effects that occur when traveling a distance in the
anisotropic medium. The anisotropy factor is
related to the second derivative of the slowness,

so the curvature of the slowness surface controls
the rate of beam spread. The anisotropy factor
can be compared with the divergence parameter
of Ogilby (Ogilvy 1986) and the distance scaling
factor of Szabo and Slobodnik (Szabo and
Slobodnik 1973). In our extension of the MMGB
model to anisotropic materials, the anisotropic
effects
divergence also enter into the solution through

of beam skew and excess beam
the parameters A-E.

In this paper, we briefly describe a highly
modular multi-Gaussian beam model that can be
efficiently used to simulate the propagation of
ultrasonic beams in an anisotropic solid. We
illustrate the effects that changes in the slowness
surface curvatures have on an ultrasonic
transducer beam radiating into an anisotropic
solid through the use of the MMGB model,
where the field radiated by a transducer is
modeled as the superposition of 10 Gaussian
beams. Simulation results are presented for an
austenitic steel when the quasilongitudinal (qL)
wave propagates in the symmetry plane of this
material. In order to check the MMGB prediction
for the anisotropy factor, we set the parameters
A-E to be zero for the isotropic solid in which
the slowness is equivalent to Sy for the

anisotropic case.

2. A Modular Gaussian Beam Model

We will
approach for the contact setup shown in Fig. 1

describe the modular Gaussian
where a Gaussian beam is radiated at normal

incidence through a planar anotropic solid
interface. For the geometry of Fig. 1, we will
assume that a Gaussian velocity profile is present
at the transducer and propagates as a Gaussian
beam into the solid. In Fig. 1, V(0) and M(0) are
the known starting amplitude and phase values in
the Gaussian at the transducer location.

When the incident Gaussian beam strikes a
general anisotropic solid, a quasi L-wave and two

quasi S-waves (qS;, qS,) will be generated and
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propagated. In order to describe the transmitted
waves in the solid we employ the coordinates (x,,
X5, X;). The x, coordinate is taken along the
direction of the slowness vector in the anisotropic
solid and (x,, x,) are coordinates orthogonal to
the x, axis, with x; in the plane of incidence and
x, normal to that plane. The propagation
distance 533 is measured in the x; direction along
the central axis of the Gaussian beam.

When  the

nonsymmetry directions, we

beam propagates in the
introduce another
coordinates (y,, ¥,, V;) to describe the beam
propagation in terms of the group velocity. The
y, axis is taken along the group velocity direction

and y, - y, plane is taken as the plane of

incidence. The distance Y3 is measured along the
y; axis. The beam skew is measured as an angle
between y, and x, axes. For the case of beam
propagation in the symmetry directions, the two
coordinate systems coincide.

V(0)
M@©)

Anisotropic solid
v

P Cor Ua & VE(F3)

S Mo M (§3)

X3

Y3
Fig. 1 A Gaussian beam propagation in a general
anisotropic  solid. Only one of three
possible propagating waves is shown. The
x3 coordinate is taken along the direction
of the slowness vector, s,, in the
anisotropic solid. For the beam propagation
in nonsymmetry directions, y; axis is taken
along the group velocity direction, u,, and
yi-y2 plane is taken as the plane of

incidence. The distance ¥3 is measured
along the ys axis. The beam skew is
measured as an angle between ys and xs
axes.

2.1 Gaussian Beam Propagation in an Anisotropic
Solid

The velocity amplitude V¢(¥3) and phase M*
(¥3) of a propagating Gaussian beam of the

wave type ¢ in the solid at distance ¥3 can be
completely described by solving the paraxial
wave equation (Huang 2005).

_ VO
Jdet[ 47 + B" M (0)]

X exp[ia) (& + %YTM“ (7) Y)]
u

(74

v (5, 0)

1)

M%(53) = [p? m(0) + C*|[B* M) + AP ()

In Eq. (1), the propagation matrices
A" B C ,D") in the solid are given by
1 0
AP =
[0 1} s
BP _Ca|(cq-2CMF5  -D“Fs } )
ug| -D*¥3 (g —2E%)F3],

cr_[0 0] pp_[t o
0 0|, 0 1

The 2x2 matrix M(0) is defined in the next
section. In Eq. (3) ¢, and u, are magnitudes of
phase and group velocities for a wave of type o,
respectively, for a given propagation direction. The
terms (C%, D¢, E%) represent the slowness surface
curvatures (as measured in the slowness coordinates
(X, X,, X;) along the refracted ray. In the isotropic
case C* =D® =E® =0. These curvature terms can
be obtained by expanding the x, component of the
slowness vector, Sq, (s3) to the second order in the
coordinates in the (x,, X,, X;) form (Rudolph 1999).

a 1 uix a a o .«
s3=———s8] +Kpsy 8

Co Ca

(LI=12)
C)]

where (u‘} u%) are the components of the group
velocity vector, u., along the (y,, y, axes,

respectively, for a wave of type «. For an
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isotropic solid u = u%=0. The matrix K¢ in Eq.

(4) is given by

Ka _ l |:Ca —2Ca —Da :| (5)
2| -p* ¢, -2E°

For some simple type of anisotropic media
the curvature terms can be expressed in analytical
form. In general, obtained
numerically from the values of the slowness

surfaces in the neighborhood of the refracted ray.

they must be

2.2 Modular Multi-Gaussian Beam Model

Using the approach of Wen and Breazeale
(Wen and Breazeale 1988), by the superposition
of 10 Gaussian beams, one can model the
corresponding wave field of a circular piston
source (of radius a). In this manner, Eq. (5) can
be written as

R V() A, d*
A4 (J’3,(D) an \/det[AG+BG (M(O))n]

X exp{ia) {& + % Y'M* (}73)YH (6)
ua

2iB
where (M(0)), = 211 I and A and B
wa n

n o are

ten complex constants (Wen and Breazeale
1988). Eq. (6) provides a highly -efficient
formulation for modeling the wave fields of
ultrasonic transducers in very complex testing
situations, and will be

“MMGB” model.

referred to as the

3. Local Properties of Slowness Surface

Equation (3) shows that the group velocity
components and slowness surface curvatures are
key parameters needed to define the propagation
characteristics of a beam in an anisotropic solid.
We examine the effects of these parameters when
the transducer beam propagates directly into the
symmetry plane of the anisotropic solid as shown
in Fig. 1.

We use a local fitting procedure to extract
the slopes and curvatures from numerical values
of the slowness surface in the neighborhood
of a particular direction. Equation (4) can be
rewritten as

| .
8= S§,+As +Bs, +[C——2—:|(S1)2
s

0

+ Ds;s, +[E ——1—} (s,)
2s,

Sampling a small patch of the x; slowness
surface near the direction N times will give rise
to an Nx5 over-determined system of equations. A
least squares method can be used to compute the
five unknown parameters of the slowness surface.

As an example of the use of this method, we
consider the austenitic stainless steel whose
properties are assumed to be transversely isotopic:
C11=Cp=262.7, C1798.2, Ci5=Cy3=145, Ci3=216,
Ca=Css=129, Ce=82.3 GPa and p=8.12 glem’.

Figure 2(a) represents an example of slowness

Curvature, mmips
N

Fig. 2 (a) Slowness diagram in for austenite in the
plane, (b) curvatures of gL wave for
austenite in the x,-x; plane
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curve as a function of propagation direction in the
x; - x3 plane of the austenitic steel. Figure 2(b)
plots the curvatures C and E for the gL wave.
Note that for this example the parameter D is zero.

4, Results and Discussion

Here some results simulated by the MMGB
model are presented. The studies show the effects
of the slowness curvature changes on the beam
propagation. We consider the qL wave radiating
directly into austenitic steel along the x; axis
which is along the 0° direction in Fig. 2(a), an
axis of symmetry. Under this condition, along the
y; axis the parameters for the qL wave are A =
B = 0, C* = E® = -8mm/ is. Since this is an
axis of material symmetry, there is no beam
skewing (¢ =0 in Fig. 1). Fig. 3 shows 2-D beam
profiles of the ql. wave generated by a 5 MHz,
6.35 mm radius planar transducer. In order to see
the effects of the curvature changes on the beam
propagation more clearly, we artificially used three
different curvature values: C=E=100%, 50%, and
0%. The 0% corresponds to the beam propagation
in the isotropic solid with a slowness equivalent to
for the anisotropic case. The profile is computed
up to 100 mm in the solid. It is obvious that the
beam spreads faster in the anisotropic cases than
in the isotropic case. Shown in Fig. 4 are plots of
the on-axis responses corresponding to the beam
profiles shown in Fig. 3. It can be clearly seen
how the beam profile moves away from the
transducer face as the curvature of the slowness
surface approach 0. Fig. 5 shows the cross-axis

beam profiles at a distance Y3 where the on-axis
response has its last peak. The last peak is found

to occur at Y3 = 875 mm and Y3 = 39 mm for
C=E=100% and 0%, respectively. The cross-axis
response is unchanged even though the curvatures
of the slowness surface changes significantly.

The anisotropy factor A/, for the qL wave
beam radiation into the austenitic steel along the
X3 axis is given by (Newberry and Thompson
1989).

A _ca (e +c44)’ ®)
Az ¢33 c33(c33—C44)

For an isotropic material, ¢i3 = ¢33 — 2ca,
and A/\; reduces to unity as it should. If we
use the elastic constants of the austenitic steel
considered in this study, Eq. (16) yields the
anisotropy factor of 4.6. This means that when

traveling a distance Y3 in the austenitic steel the

equivalent distance becomes (A/\ 2)¥3=4.693 to
achieve the same diffraction in an isotropic solid
with a slowness equivalent to So of the austenitic
steel. If we refer to Fig. 4, this anisotropy factor
is calculated as 39/3.75 =~ 4.5 from the last peak
distances for C=E=100% and 0% cases. Based on
these comparisons, the MMGB model seems to
provide very accurate diffraction effects.

Distance fmm)

100
30 20 10 0 10 20 30
Cross.ads distance {mm)

Fig. 3 2-D beam profiles of a 5§ MHz, 6.35 mm
diameterplanar transducer radiating directly
into austenitic steel. Slowness curvatures
change from C=E=100% to 0%. The 0%
corresponds to the isotropic case.

Magnitude

0 20 40 60 80 100
On-ands distance {mm)

Fig. 4 On-axis responses corresponding to the
beam profiles shown in Fig. 3
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Magnitude
o

035
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Fig. 5 Cross-axis beam profile at a distance Y3
where the on-axis response has its last
peak

The MMGB model employed in this paper
can be used to determine the transducer beam
profile as it propagates in nonsymmetry directions
within a symmetry plane. In this case, the
anisotropic effects of beam skew and excess
beam divergence due to diffraction should be
observed at the same time. For this example, the
solid will be taken to be the transversely isotropic

austenite discussed in the

previous section.
Referring to Fig. 2, we can choose any directions
except 4 = 0° and ¢ = 90°. In this example,
however, we decided to use the propagation
direction along ¢ = 72.3°. The main reason for
selecting this direction is that the curvatures C
and E have the same value.

For the beam propagation in this direction,
we rotate the coordinates (x;, X,, X;) to the axis
aligned with the beam, so that the slowness
vector direction (or wave vector direction) always
coincides with the x, axis. The slowness surface
or the slowness curve in the x; — x, plane can
then be obtained by rotating the stiffness tensor —
which is originally defined in the material
coordinate system — # = 72.3° about the x, axis
using the tensor transformation rules (Auld 1990).

Since the beam is normally incident, the
propagating wave vector will be normal to the
transducer face as well. The actual group velocity
is normal to the slowness curve generated in the
new coordinate system, and consequently the

beam will skew.

The magnitude of the beam profile in the x-z
plane is shown in Fig. 6. As a comparison,
Fig. 6 includes an analogous situation of C=E=0
(isotropic case) and C=E=-150%. The same
diffraction effects are observed as in the previous
example. In other words, the beam pulls toward
the transducer face as the values of C and E
change from their original positive values to 0
and then negative values. This is consistent with
the anisotropy factor for this case, A/\;=0.9.

The beam is seen to skew to the left of the

inward normal direction. The approximate skew
angle is ¥ = arccos(l/ A% B2 42 ) =-12.2°

whereas the exact skew angle is found to be

¢ = —12.7°. Based on these observations, the
MMGB model correctly predicts both the beam
skew and beam diffraction due to anisotropy.
More complicated effects of the slowness surface
are expected when the transducer beam propagates

in a more general direction of anisotropic materials.

o

Distancs (mm)
2 &8 3

3

.3
s

400 10 20 3
Cross-axis distance (mm)

Fig. 6 2-D beam profile of a 5 MHz, 6.35 mm
diameterplanar transducer radiating directly
into austenitic steel. Slowness curvatures
change from C=E=100% to C=E=-150%

25

— CE-100%
— - C=E=0
- - C=E=-150%

Magnitude

0 Zb 4IO Gb Sb 100
On-axis distance {mm}

Fig. 7 On-axis responses corresponding to the

beam profiles shown in Fig. 6
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5. Conclusions

The slowness surface parameters such as
slopes and curvatures are needed when simulating
the beam propagation in anisotropic materials
with models based on the paraxial approximation.
The slopes of the slowness surface are related to
the group velocity components in anisotropic
materials, and it is well known that this causes
beam skewing. We applied the MMGB model to
look at the beam profile in transversely isotropic
austenitic steels. The slowness curvatures also
come into the MMGB model. We used a local
fitting procedure to extract the curvatures from
numerical values of the slowness surface in the
neighborhood of a particular direction. Through
parametric studies it was shown that the MMGB
model correctly predicted the anisotropic effects
of beam diffraction and beam skew. Therefore,
the MMGB model can be efficiently used to
predict the diffraction corrections in ultrasonic
measurement models for anisotropic materials.
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