• Title/Summary/Keyword: Animal Genomics

Search Result 312, Processing Time 0.026 seconds

Recent advances in breeding and genetics for dairy goats

  • Gipson, Terry A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.8_spc
    • /
    • pp.1275-1283
    • /
    • 2019
  • Goats (Capra hircus) were domesticated during the late Neolithic, approximately 10,500 years ago, and humans exerted minor selection pressure until fairly recently. Probably the largest genetic change occurring over the millennia happened via natural selection and random genetic drift, the latter causing genes to be fixed in small and isolated populations. Recent human-influenced genetic changes have occurred through biometrics and genomics. For the most part, biometrics has concentrated upon the refining of estimates of heritabilities and genetic correlations. Heritabilities are instrumental in the calculation of estimated breeding values and genetic correlations are necessary in the construction of selection indices that account for changes in multiple traits under selection at one time. Early genomic studies focused upon microsatellite markers, which are short tandem repeats of nucleic acids and which are detected using polymerase chain reaction primers flanking the microsatellite. Microsatellite markers have been very important in parentage verification, which can impact genetic progress. Additionally, microsatellite markers have been a useful tool in assessing genetic diversity between and among breeds, which is important in the conservation of minor breeds. Single nucleotide polymorphisms are a new genomic tool that have refined classical BLUP methodology (biometric) to provide more accurate genomic estimated breeding values, provided a large reference population is available.

Ingestion of Gouda Cheese Ameliorates the Chronic Unpredictable Mild Stress in Mice (마우스 모델에서 Gouda Cheese 섭취에 따른 만성 스트레스 개선 효과)

  • Kang, Min Kyoung;Yun, Bohyun;Oh, Sangnam
    • 축산식품과학과 산업
    • /
    • v.9 no.2
    • /
    • pp.58-65
    • /
    • 2020
  • 우울증은 동기, 의욕, 관심, 주의력, 정신기능 및 식욕의 감소를 특징으로 하는 일종의 기분 장애이다. 우울증은 유전적, 내분비 및 환경적 스트레스를 포함한 다양한 원인에 의해 발생하지만 가벼운 우울증은 식이요법으로 개선되는 것으로 보고되었다. 따라서 우울증 환자를 치료하기 위해서는 기능성 및 영양 보충제를 포함한 다양한 식품 공급원이 필요하다. 치즈에는 숙주 건강에 유익한 영향을 미치는 생리 활성 펩타이드가 포함되어 있다. 특히 저지(Jersey) 우유는 홀스타인(Holstein) 우유보다 고형분 함량이 높은 것으로 보고되었다. 이 연구는 저지(Jersey) 와 홀스타인(Holstein) 우유의 가우다 치즈(Gouda cheese)가 만성 스트레스(CUMS, chronic unpredictable mild stress)에 미치는 영향을 조사했다. 치즈를 먹인 만성 스트레스 마우스 모델의 개선적 변화는 젖소 종에 관계없이 통계적으로 유의미하게 효과적으로 나타났다. 흥미롭게도 PCR을 통한 분변 미생물 균총 분석에서 저지 치즈를 섭취함으로써 Bacteroidetes가 증가하고 Firmicutes가 유의적으로 감소하는 것으로 나타났다. 종합하면, 본 연구는 치즈 섭취가 스트레스 개선 작용이 있음을 제시하며, 특히 장내 미생물 균총의 유익한 방향으로의 변화가 관찰되는데, 치즈의 생리활성물질 혹은 장내미생물 균총의 대사물질들이 이러한 행동·정신학적 개선 작용과의 연관성이 있음을 시사한다.

Whole-exome sequencing analysis in a case of primary congenital glaucoma due to the partial uniparental isodisomy

  • Zavarzadeh, Parisima Ghaffarian;Bonyadi, Morteza;Abedi, Zahra
    • Genomics & Informatics
    • /
    • v.20 no.3
    • /
    • pp.28.1-28.7
    • /
    • 2022
  • We described a clinical, laboratory, and genetic presentation of a pathogenic variant of the CYP1B1 gene through a report of a case of primary congenital glaucoma and a trio analysis of this candidate variant in the family with the Sanger sequencing method and eventually completed our study with the secondary/incidental findings. This study reports a rare case of primary congenital glaucoma, an 8-year-old female child with a negative family history of glaucoma and uncontrolled intraocular pressure. This case's whole-exome sequencing data analysis presents a homozygous pathogenic single nucleotide variant in the CYP1B1 gene (NM_000104:exon3:c.G1103A:p.R368H). At the same time, this pathogenic variant was obtained as a heterozygous state in her unaffected father but not her mother. The diagnosis was made based on molecular findings of whole-exome sequencing data analysis. Therefore, the clinical reports and bioinformatics findings supported the relation between the candidate pathogenic variant and the disease. However, it should not be forgotten that primary congenital glaucoma is not peculiar to the CYP1B1 gene. Since the chance of developing autosomal recessive disorders with low allele frequency and unrelated parents is extraordinary in offspring. However, further data analysis of whole-exome sequencing and Sanger sequencing method were applied to obtain the type of mutation and how it was carried to the offspring.

Characterizing Milk Production Related Genes in Holstein Using RNA-seq

  • Seo, Minseok;Lee, Hyun-Jeong;Kim, Kwondo;Caetano-Anolles, Kelsey;Jeong, Jin Young;Park, Sungkwon;Oh, Young Kyun;Cho, Seoae;Kim, Heebal
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.3
    • /
    • pp.343-351
    • /
    • 2016
  • Although the chemical, physical, and nutritional properties of bovine milk have been extensively studied, only a few studies have attempted to characterize milk-synthesizing genes using RNA-seq data. RNA-seq data was collected from 21 Holstein samples, along with group information about milk production ability; milk yield; and protein, fat, and solid contents. Meta-analysis was employed in order to generally characterize genes related to milk production. In addition, we attempted to investigate the relationship between milk related traits, parity, and lactation period. We observed that milk fat is highly correlated with lactation period; this result indicates that this effect should be considered in the model in order to accurately detect milk production related genes. By employing our developed model, 271 genes were significantly (false discovery rate [FDR] adjusted p-value<0.1) detected as milk production related differentially expressed genes. Of these genes, five (albumin, nitric oxide synthase 3, RNA-binding region (RNP1, RRM) containing 3, secreted and transmembrane 1, and serine palmitoyltransferase, small subunit B) were technically validated using quantitative real-time polymerase chain reaction (qRT-PCR) in order to check the accuracy of RNA-seq analysis. Finally, 83 gene ontology biological processes including several blood vessel and mammary gland development related terms, were significantly detected using DAVID gene-set enrichment analysis. From these results, we observed that detected milk production related genes are highly enriched in the circulation system process and mammary gland related biological functions. In addition, we observed that detected genes including caveolin 1, mammary serum amyloid A3.2, lingual antimicrobial peptide, cathelicidin 4 (CATHL4), cathelicidin 6 (CATHL6) have been reported in other species as milk production related gene. For this reason, we concluded that our detected 271 genes would be strong candidates for determining milk production.

Marker Assisted Selection-Applications and Evaluation for Commercial Poultry Breeding

  • Sodhi, Simrinder Singh;Jeong, Dong Kee;Sharma, Neelesh;Lee, Jun Heon;Kim, Jeong Hyun;Kim, Sung Hoon;Kim, Sung Woo;Oh, Sung Jong
    • Korean Journal of Poultry Science
    • /
    • v.40 no.3
    • /
    • pp.223-234
    • /
    • 2013
  • Poultry industry is abounding day by day as it engrosses less cost of investment per bird as compared to large animals. Poultry have the most copious genomic tool box amongst domestic animals for the detection of quantitative trait loci (QTL) and marker assisted selection (MAS). Use of multiple markers and least square techniques for mapping of QTL affecting quality and production traits in poultry is in vogue. Examples of genetic tests that are available to or used in industry programs are documented and classified into causative mutations (direct markers), linked markers in population-wide linkage disequilibrium (LD) with the QTL (LD markers), and linked markers in population wide equilibrium with the QTL (LE markers). Development of genome-wide SNP assays, role of 42 K, 60 K (Illumina) and 600 K (Affymetrix$^{(R)}$ Axim$^{(R)}$) SNP chip with next generation sequencing for identification of single nucleotide polymorphism (SNP) has been documented. Hybridization based, PCR based, DNA chip and sequencing based are the major segments of DNA markers which help in conducting of MAS in poultry. Economic index-marker assisted selection (EI-MAS) provides platform for simultaneous selection for production traits while giving due weightage to their marginal economic values by calculating predicted breeding value, using information on DNA markers which are normally associated with relevant QTL. Understanding of linkage equilibrium, linkage dis-equilibrium, relation between the markers and gene of interest are quite important for success of MAS. This kind of selection is the most useful tool in enhancing disease resistance by identifying candidate genes to improve the immune response. The application of marker assisted selection in selection procedures would help in improvement of economic traits in poultry.

Development of Local Animal BLAST Search System Using Bioinformatics Tools (생물정보시스템을 이용한 Local Animal BLAST Search System 구축)

  • Kim, Byeong-Woo;Lee, Geun-Woo;Kim, Hyo-Seon;No, Seung-Hui;Lee, Yun-Ho;Kim, Si-Dong;Jeon, Jin-Tae;Lee, Ji-Ung;Jo, Yong-Min;Jeong, Il-Jeong;Lee, Jeong-Gyu
    • Bioinformatics and Biosystems
    • /
    • v.1 no.2
    • /
    • pp.99-102
    • /
    • 2006
  • The Basic Local Alignment Search Tool (BLAST) is one of the most established software in bioinformatics research and it compares a query sequence against the libraries of known sequences in order to investigate sequence similarity. Expressed Sequence Tags (ESTs) are single-pass sequence reads from mRNA (or cDNA) and represent the expression for a given cDNA library and the snapshot of genes expressed in a given tissue and/or at a given developmental stage. Therefore, ESTs can be very valuable information for functional genomics and bioinformatics researches. Although major bio database (DB) websites including NCBI are providing BLAST services and EST data, local DB and search system is demanding for better performance and security issue. Here we present animal EST DBs and local BLAST search system. The animal ESTs DB in NCBI Genbank were divided by animal species using the Perl script we developed. and we also built the new extended DB search systems fur the new data (Local Animal BLAST Search System: http://bioinfo.kohost.net), which was constructed on the high-capacity PC Cluster system fur the best performance. The new local DB contains 650,046 sequences for Bos taurus(cattle), 368,120 sequences for Sus scrofa (pig), 693,005 sequences for Gallus gallus (fowl), respectively.

  • PDF

Neuropeptidomics: Mass Spectrometry-Based Identification and Quantitation of Neuropeptides

  • Lee, Ji Eun
    • Genomics & Informatics
    • /
    • v.14 no.1
    • /
    • pp.12-19
    • /
    • 2016
  • Neuropeptides produced from prohormones by selective action of endopeptidases are vital signaling molecules, playing a critical role in a variety of physiological processes, such as addiction, depression, pain, and circadian rhythms. Neuropeptides bind to post-synaptic receptors and elicit cellular effects like classical neurotransmitters. While each neuropeptide could have its own biological function, mass spectrometry (MS) allows for the identification of the precise molecular forms of each peptide without a priori knowledge of the peptide identity and for the quantitation of neuropeptides in different conditions of the samples. MS-based neuropeptidomics approaches have been applied to various animal models and conditions to characterize and quantify novel neuropeptides, as well as known neuropeptides, advancing our understanding of nervous system function over the past decade. Here, we will present an overview of neuropeptides and MS-based neuropeptidomic strategies for the identification and quantitation of neuropeptides.

The Response of QTL in Generation during Selection (선발과정에서의 세대별 QTL 좌위 고정에 관한 연구)

  • Lee Ji-Woong
    • Journal of Embryo Transfer
    • /
    • v.20 no.3
    • /
    • pp.217-232
    • /
    • 2005
  • The objective of this study was to determine the response of QTL in each generation during selection to develop inbred lines. The simulation program was written in Fortran. Magnitude of QTL effects, base population size, number of QTL assigned to population, and the allelic frequency for the positive allele at each major QTL were highly associated with number of generations to fixation of QTLs during selection. Populations with larger QTL effects and larger base population size had more individuals with fixed QTL. However, a smaller number of QTL assigned to population had a higher fraction of individuals with fixed QTL at each generation compared with more populations with QTL. This simulation study will help to design biological experiments for detection of QTL-marker association using inbred population and to determine optimum number of lines with fixed QTL during inbred line development. To complement this study, additional simulation should be need with abundant replicates, more various population sizes, magnitude of QTL effects, and recombination between markers and QTLs.

Determination of Microbial Diversity in Gouda Cheese via Pyrosequencing Analysis

  • Oh, Sangnam;Kim, Younghoon
    • Journal of Dairy Science and Biotechnology
    • /
    • v.36 no.2
    • /
    • pp.125-131
    • /
    • 2018
  • The present study aimed to investigate the microbial diversity in Gouda cheese within the four months of ripening, via next-generation sequencing (NGS). Lactococcus (96.03%), and Leuconostoc (3.83%), used as starter cultures, constituted the majority of bacteria upon 454 pyrosequencing based on 16S rDNA sequences. However, no drastic differences were observed among other populations between the center and the surface portions of Gouda cheese during ripening. Although the proportion of subdominant species was <1%, slight differences in bacterial populations were observed in both the center and the surface portions. Taken together, our results suggest that environmental and processing variables of cheese manufacturing including pasteurization, starter, ripening conditions are important factors influencing the bacterial diversity in cheese and they can be used to alter nutrient profiles and metabolism and the flavor during ripening.

Genomic Research as a Means to Understand Bacterial Phylogeny and Ecological Adaptation of the Genus Bifidobacterium (Bifidobacterium의 분자생물학적 연구 동향)

  • Kim, Geun-Bae
    • 한국유가공학회:학술대회논문집
    • /
    • 2007.09a
    • /
    • pp.21-29
    • /
    • 2007
  • The field of microbiology has in recent years been transformed by huge increasing number of publicly available whole-genome sequences. This sequence information has significantly enhanced our understanding of the physiology, genetics, and evolutionary development of bacteria. Among the gastrointestinal microorganisms, bifidobacteria represent important human commensals because of their perceived contribution to maintaining a balanced gastrointestinal tract microbiota. In recent years bifidobacteria have drawn much scientific attention due to their use as live bacteria in numerous food products with various health-related claims. For this reason, these bacteria constitute a growing area of interest with respect to genomics, molecular biology, and genetics. Recent genome sequencing of a number of bifidobacterial species has allowed access to the complete genetic make-up of these bacteria. This review will focus how genomic data has allowed us to understand bifidobacterial evolution, while also revealing genetic functions that explains their presence in the particular ecological environment of the gastrointestinal tract.

  • PDF