• Title/Summary/Keyword: Analytical field analysis

Search Result 850, Processing Time 0.041 seconds

Failure Prediction for Weak Rock Slopes in a Large Open-pit Mine by GPS Measurements and Assessment of Landslide Susceptibility (대규모 노천광 연약암반 사면에서의 GPS 계측과 위험도평가에 의한 파괴예측)

  • SunWoo, Choon;Jung, Yong-Bok;Choi, Yo-Soon;Park, Hyeong-Dong
    • The Journal of Engineering Geology
    • /
    • v.20 no.3
    • /
    • pp.243-255
    • /
    • 2010
  • The slope design of an open-pit mine must consider economical efficiency and stability. Thus, the overall slope angle is the principal factor because of limited support or reinforcement options available in such a setting. In this study, slope displacement, as monitored by a GPS system, was analyzed for a coal mine at Pasir, Indonesia. Predictions of failure time by inverse velocity analysis showed good agreement with field observations. Therefore, the failure time of an unstable slope can be roughly estimated prior to failure. A GIS model that combines fuzzy theory and the analytical hierarchy process (AHP) was developed to assess slope instability in open-pit coal mines. This model simultaneously considers seven factors that influence the instability of open-pit slopes (i.e., overall slope gradient, slope height, surface flows, excavation plan, tension cracks, faults, and water body). Application of the proposed method to an open-pit coal mine revealed an enhanced prediction accuracy of failure time and failure site compared with existing methods.

Estimation of the Characteristics of Delayed Failure and Long-term Strength of Granite by Brazilian Disc Test (압열인장시험을 이용한 화강암의 지연파괴특성 및 장기안정성 평가)

  • Jung, Yong-Bok;Cheon, Dae-Sung;Park, Eui-Seob;Park, Chan;Lee, Yun-Su;Park, Chul-Whan;Choi, Byung-Hee
    • Tunnel and Underground Space
    • /
    • v.24 no.1
    • /
    • pp.67-80
    • /
    • 2014
  • Long-term stability and delayed failure of granite were evaluated through the laboratory test based on Wilkins method and Brazilian disc test (BDT) which yields tensile strength, mode I fracture toughness and subcritical crack growth parameters. Then, the long-term strength of granite was estimated by using analytical models and long-term stability of compressed air-energy storage (CAES) pilot cavern pressurized up to 5 ~ 6 MPa was evaluated using numerical code, FRACOD with the determined subcritical crack growth parameters. The results of test and analyses showed that the subcritical crack growth index, n was determined as 29.39 and the inner pressure of 5 ~ 6 MPa had an insignificant effect on the long-term stability of pilot cavern. It was also found that the measurement and analysis of acoustic emission events can describe the accumulation of damage due to subcritical crack growth quantitatively. That is, AE monitoring can provide the current status of rock under loading if we make an identical installation condition in the field with that of the laboratory test.

Detection Characteristics of a Red Blood Cell Coupled with Micron Magnetic Beads by Using GMR-SV Device (GMR-SV 소자를 이용한 미크론 자성비드와 결합된 적혈구 검출 특성 연구)

  • Lee, Jae-Yeon;Kim, Moon-Jong;Lee, Sang-Suk;Rhee, Jin-Kyu
    • Journal of the Korean Magnetics Society
    • /
    • v.24 no.4
    • /
    • pp.101-106
    • /
    • 2014
  • The glass/Ta(5.8 nm)/NiFe(5 nm)/Cu(2.3 nm)/NiFe(3 nm)/IrMn(12 nm)/Ta(5.8 nm) GMR-SV (giantmagneto-resistance-spin valve) multilayer structure films with a magnetoresistance ratio (MR) of 5.0 % and a magnetic sensitivity (MS) of 1.5%/Oe was deposited by dc magnetron sputtering method. Also, GMR-SV device having a width of $7{\mu}m{\sim}8{\mu}m$ similar to the diameter of RBC (red blood cell) was fabricated by the light lithography process. When RBCs coupled with several magnetic beads with a diameter of $1{\mu}m$ dropped upon the GMR-SV device having MR = 1.06% and MS = 0.3 %/Oe, there is observed the variation of about included of a resistance value of ${\Delta}R=0.4{\Omega}$ and ${\Delta}MR=0.15%$ around a external magnetic field of -0.6 Oe. From these results, the GMR-SV device having the width magnitude of a few micron size can be applied as the biosensor for the analysis of a new magnetic property of hemoglobin inside of RBC combined to magnetic beads.

An Introduction to Microsatellite Development and Analysis (Microsatellite 개발 및 분석법에 대한 소개)

  • Yun Young-Eun;Yu Jeong-Nam;Lee Byoung-Yoon;Kwak Myounghai
    • Korean Journal of Plant Taxonomy
    • /
    • v.41 no.4
    • /
    • pp.299-314
    • /
    • 2011
  • The choice of molecular markers is the first step when selecting experimental plans in the field of population genetics. The popular molecular markers in population genetic studies are mainly allozyme, RAPD, RFLP, AFLP, microsatellite, SNP and ISSR. Among these, microsatellites are frequently found in nuclear, chloroplast and mitochondrial genome, showing a high level of polymorphism and nuclear microsatellites are codominant. Thus, it is a favorable molecular marker for population structure analyses and genetic diversity studies. Microsatellites are composed of tandem repeated 1~6 base pair nucleotide motifs and can be easily amplified by PCR reactions using locus specific primers. Because microsatellites have low cross-species transferability, however, they are only applicable between phylogenetically close species. In wild plants, the lack of genomic information and the high development cost of the microsatellite obstruct the wider use of microsatellites in plant population genetics research. In this review, we introduce the basis for microsatellite markers, the development process, and analytical methods as well as evolutionary models and their applications. In addition, possible genotyping errors which lead to erroneous conclusions are discussed.

Analytical Evaluation on Soil Slope Reinforced by Pressure Grouted Protrusion Type Soil Nailing (가압식 돌기네일에 의해 보강된 토사 비탈면의 해석적 평가)

  • Hong, Cheor-Hwa;Lee, Sang-Duk
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.7
    • /
    • pp.5-16
    • /
    • 2017
  • Soil nailing is the most general method to reinforce the slope by taking pullout and shear resistance force of the nail for stabilizing the slope. Domestic soil nailing design method considers only pullout resistance and does not consider the shear resistance sufficiently. In case of nail, the effect of tensile stress is dominant, but it is desirable to design by considering shear stress as well as tensile stress in case of slope where circle failures occur. Recently, studies on the shear resistance effect of nails have been carried out in the geotechnical field. However, many researches on the shear reinforcement effect of soil nailing have not been conducted until now. Most of the studies are about increasing pullout resistance by improving material, shape and construction method of nail. Therefore, it is necessary to the study on shear resistance of soil nailing and development of new methods to increase the shear force. In this study, large shear test and limit equilibrium analysis have been performed for a new soil nailing method to increase the shear resistance by forming protrusions through pressurized grouting after installing a packer on the outside of deformed bar. The study results showed that shear resistance of protrusion type soil nailing increased compared to soil nailing and it is more effective when applied to the ground with large strength parameters.

Effect of Light Transmission on Composition and Somatic Cell count of Raw Milk (분광된 빛의 주사가 원유내 성분에 미치는 영향)

  • Ko, Han-Jong;Kim, Ki-Youn;Min, Young-Bong;Nishizu, Takahisa;Yun, Yong-Chul;Kim, Hyeon-Tae
    • Journal of agriculture & life science
    • /
    • v.46 no.1
    • /
    • pp.189-194
    • /
    • 2012
  • Measurement of compositions and somatic cells in raw milk by chemical methods usually requires a lot of time, skilled labor and expensive analytical equipments. Recently, near-infrared reflectance spectroscopy (NIRS), which is a rapid, cost-effective and non-destructive technique, has been extensively used for safety and quality evaluation in the field of dairy products. However, less study has been performed to evaluate the effect of transmitted light on milk quality during NIRS analysis. Therefore, the objective of this study was to analyze the changes in milk quality using transmitted light. Raw milk samples collected from dairy farm from Siga prefecture in Japan were analyzed for fat, protein, lactose, solids not fat, total solids, milk urea and citric acid using the Milko scan 4000. Somatic cells in raw milk samples were counted by the Fossomatic 5000. Transmittance spectra of 50 ml raw milk samples were obtained by the Lax-Cute lighter in the 400 nm or less, 689 nm, 773 nm, 900 nm and 979 nm. As a result, milk fat as well as somatic cell count was increased by 2.6% and 9.0%, respectively. The other compositions were, however, changed within the relative error of the measurement. Further studies are needed to apply raw milk quality evaluation using the UV band by accumulating more samples and more data.

Application of Reverse Transcription Droplet Digital PCR for Detection and Quantification of Tomato Spotted Wilt Virus (Reverse Transcription Droplet Digital PCR을 활용한 Tomato Spotted Wilt Virus 검출 및 정량)

  • Lee, Hyo-Jeong;Park, Ki Beom;Han, Yeon Soo;Jeong, Rae-Dong
    • Research in Plant Disease
    • /
    • v.27 no.3
    • /
    • pp.120-127
    • /
    • 2021
  • Plant viruses cause significant yield losses, continuously compromising crop production and thus representing a serious threat to global food security. Tomato spotted wilt virus (TSWV) is the most harmful plant virus that mainly infects horticultural crops and has a wide host range. Reverse-transcription quantitative real-time PCR (RT-qPCR) has been widely used for detecting TSWV with high sensitivity, but its application is limited owing to the lack of standardization. Therefore, in this study, a sensitive and accurate reverse transcription droplet digital polymerase chain reaction (RT-ddPCR) method was established for TSWV detection. Additionally, we compared the sensitivities of RT-qPCR and RT-ddPCR for TSWV detection. Specificity analysis of RT-ddPCR for TSWV showed no amplification for main pepper viruses and negative control. TSWV transcripts levels measured by RT-ddPCR and RT-qPCR showed a high degree of linearity; however, the former yielded results that were at least 10-fold more sensitive and detected lower TSWV copy numbers than the latter. Collectively, our findings show that RT-ddPCR provides improved analytical sensitivity and specificity for TSWV detection, making it suitable for identifying low TSWV concentrations in field samples.

The Correlation between Social Media and the Behaviors of the Supreme Court in Korea (소셜미디어와 대법원 판결의 상관 관계에 대한 분석)

  • Heo, Junhong;Seo, Yeeun;Lee, Seoyeong;Lee, Sang-Yong Tom
    • Knowledge Management Research
    • /
    • v.22 no.3
    • /
    • pp.31-53
    • /
    • 2021
  • As a communication channel for individuals, social media is affecting various areas such as business, economy, politics, and society. One of the less-studied areas is the law. Therefore, this study collected various information from social media and analyzed its impacts on the legal decisions, especially the Supreme Court decisions in Korea. This study was conducted by compiling information from Internet news articles and public responses. We found that when the negative reactions from the public got higher, the trial duration until the supreme court making the final decisions became shorter. However, we were not able to find the significant relationship between social media reactions and dismissal of appeal nor annulment. Our study would contribute to the information systems and knowledge management research in a sense that the social analytics is applied to the area of legal decisions, instead of using conventional qualitative study methodology. Our study is also meaningful to the practitioners because that big data analytical business can be applied to the field of law by creating a new database for the emerging legal technology. Finally, law makers can think of a better way to standardize the legal decision process to minimize the reverse effects from social media.

A Review on Remote Sensing Techniques and Case Studies for Active Fault Investigation (활성단층 조사에 활용되는 원격탐사 기술과 사례의 고찰)

  • Gwon, Ohsang;Son, Hyorok;Bae, Sangyeol;Park, Kiwoong;Choi, Ho-Seok;Kim, Young-Seog;Lee, Seoung-Kuk
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_2
    • /
    • pp.1901-1922
    • /
    • 2021
  • Since most large earthquakes occur by reactivation of preexisting active faults, it is important to understand the locations and characteristics of active faults in terms of earthquake hazard research and earthquake disaster prevention. Recently, several remote sensing techniques are broadly used for lineament analysis performed prior to field surveys in active fault surveys. The aim of this paper is introducing simple principles and application examples of each remote sensing technique (satellite remote sensing, airborne remote sensing, InSAR, LiDAR) widely used for active fault investigation. This paper also explains the analytical methods for the slope break generated by fault activity based on GIS and the horizontal displacement of the strike-slip fault. In discussion, we would like to discuss the problems and solutions on making DEM based on aerial photography, and a new developed technique (RRIM) to overcome the problems of DEM based on aerial LiDAR. Understanding remote sensing techniques used for active fault investigation and utilizing appropriate methods depending on the situation and limitations of each remote sensing technique are important for effective active fault investigation.

A Study on Cause Analysis and Countermeasures of Chloride Attack of Reinforced Earth Retaining Walls Installed on Bridge Abutment (염해로 인한 교대부 보강토옹벽 손상 원인 분석 연구)

  • Do, Jong-Nam;Kim, Nag-Young;Cho, Nam-Hun;You, Kwang-Ho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.12
    • /
    • pp.59-64
    • /
    • 2018
  • The damages to the reinforced earth retaining wall are divided into the front wall, foundation, drainage and upper slope. Damage of reinforced earth retaining wall is mainly caused by damage caused by drainage problem in the field. Recently, damage caused by snow removal materials have been occurred. Recently, the amount of snow removal materials used in winter is increasing due to abnormal weather. This chlorides degrades the concrete structure, where the reinforced earth retaining wall was no exception. There has recently been a case in which the front wall of the reinforced earth retaining wall deteriorates due to the chlorides introduced into the back filling portion through the drainage passage. Therefore, in this study, the cause of damages of reinforced earth retaining wall constructed in bridge abutment was analyzed, and an analytical study was conducted on the countermeasure. As a result, it was found that chlorides, which was introduced through the drainage system in the expansion joint of the bridge shift part or the upper structure, is infiltrated into the back part of the reinforced earth retaining wall and damaged. Therefore, it is suggested to improve the drainage system and restored the stiffness of the front wall.