An Introduction to Microsatellite Development and Analysis

Microsatellite 개발 및 분석법에 대한 소개

  • Yun Young-Eun (Wildlife Genetic Resources Center, National Institute of Biological Resources) ;
  • Yu Jeong-Nam (Wildlife Genetic Resources Center, National Institute of Biological Resources) ;
  • Lee Byoung-Yoon (Wildlife Genetic Resources Center, National Institute of Biological Resources) ;
  • Kwak Myounghai (Wildlife Genetic Resources Center, National Institute of Biological Resources)
  • Received : 2011.09.03
  • Accepted : 2011.12.14
  • Published : 2011.12.31

Abstract

The choice of molecular markers is the first step when selecting experimental plans in the field of population genetics. The popular molecular markers in population genetic studies are mainly allozyme, RAPD, RFLP, AFLP, microsatellite, SNP and ISSR. Among these, microsatellites are frequently found in nuclear, chloroplast and mitochondrial genome, showing a high level of polymorphism and nuclear microsatellites are codominant. Thus, it is a favorable molecular marker for population structure analyses and genetic diversity studies. Microsatellites are composed of tandem repeated 1~6 base pair nucleotide motifs and can be easily amplified by PCR reactions using locus specific primers. Because microsatellites have low cross-species transferability, however, they are only applicable between phylogenetically close species. In wild plants, the lack of genomic information and the high development cost of the microsatellite obstruct the wider use of microsatellites in plant population genetics research. In this review, we introduce the basis for microsatellite markers, the development process, and analytical methods as well as evolutionary models and their applications. In addition, possible genotyping errors which lead to erroneous conclusions are discussed.

분자 마커의 선택은 집단유전학의 연구방법을 결정하는 중요한 고려사항으로, 현재까지 동식물의 집단유전학 연구에는 알로자임, RAPD, RFLP, AFLP, microsatellite, SNP, ISSR 등이 개발되어 주로 사용되고 있다. 이 중 microsatellite는 핵뿐만 아니라 엽록체, 미토콘드리아와 같은 세포소기관의 게놈상에 매우 풍부하게 존재하며, 핵에서 유래된 microsatellite는 높은 다형성을 보이는 공우성 마커로 집단 구조 및 유전적 다양성 연구에서 최근 선호된다. Microsatellite는 보통 1~6 bp의 짧은 서열이 반복된 것으로 각각의 유전자좌에 특화된 프라이머를 사용하여 증폭한다. Microsatellite는 PCR 반응으로 쉽게 유전자형을 분석할 수 있는 장점이 있으나, 종 특이적으로 개발되고 계통적으로 매우 가까운 근연종에게만 적용될 수 있는 단점이 있다. 따라서, 야생식물의 경우 microsatellite 개발에 필요한 게놈 정보가 부족하고 신규 개발비용이 많이 소요되어 적용이 쉽지 않았으나, 점차 개발비용이 낮아지고 있어, 야생식물을 대상으로 한 microsatellite 연구들이 증가하고 있는 추세이다. 따라서, 본 논문에서는 야생식물의 microsatellite를 이용한 분석 기초를 마련하고자 microsatellite 마커의 다양한 개발 및 분석 방법, 진화 모델 및 적용 분야에 대해 소개하고, 유전자형 결정시 잘못된 결론을 도출할 가능성이 높은 부분에 대한 사항들을 지적하여 야생식물의 microsatellite를 이용한 집단유전학적 분석에 도움을 주고자 하였다.

Keywords

Acknowledgement

Supported by : 국립생물자원관

References

  1. Ainsworth, E. A., P. J. Tranel, B. G. Drake and S. P. Long. 2003. The clonal structure of Quercus geminata revealed by conserved microsatellite loci. Mol. Ecol. 12: 527-532. https://doi.org/10.1046/j.1365-294X.2003.01749.x
  2. Akkaya, M. S., A. A. Bhagwatt and P. B. Cregan. 1992. Length polymorphisms of simple sequence repeat DNA in soybean. Genetics 132: 1131-1139.
  3. Asif, M., Mehboob-ur-Rahman, J. I. Mirza and Y. Zafar. 2008. High resolution metaphor agarose gel electrophoresis for genotyping with microsatellite markers. Pak. J. Agri. Sci. 45: 75-79.
  4. Baek, H. -J., M. -S. Yoon, H. -H. Kim, J. Lee, K. -L. Park, Y. -H. Cho and W. -Y. Choi. 2004. Diversity and relationships among Korean barley (Hordeum vulgare L.) germplasm by microsatellite. Korean J. Breed. 36: 249-259.
  5. Baruah, A., V. Naik, P. S. Hendre, R. Rajkumar, P. Rajendrakumar and R. K. Aggarwal. 2003. Isolation and characterization of nine microsatellite markers from Coffea arabica L., showing wide cross-species amplifications. Mol. Ecol. Notes. 3: 647-650. https://doi.org/10.1046/j.1471-8286.2003.00544.x
  6. Bassam, B. J., G. C. Anolles and P. M. Gresshoff. 1991. Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal. Biochem. 196: 80-83. https://doi.org/10.1016/0003-2697(91)90120-I
  7. Berg, J., R. Neumann, H. Cederberg, U. Rannug and A. J. Jeffereys. 2003. Two modes of germline instability at human minisatellite MS1 (locus D1S7): complex rearrangements and paradoxical hyperdeletion. Am. J. Hum. Genet. 72: 1326-1447.
  8. Brinkmann, B., M. Klintschar, F. Neuhuber, J. Hühne and B. Rolf. 1998. Mutation rate in human microsatellites: influence of the structure and length of the tandem repeat. Am. J. Hum. Genet. 62: 1408-1415. https://doi.org/10.1086/301869
  9. Brownstein, M. J., J. D. Carpten and J. R. Smith. 1996. Modulation of non-templated nucleotide addition by Taq DNA polymerase: primer modifications that facilitate genotyping. BioTechniques 20: 1004-1010.
  10. Butler, J. M. 2005. Forensic DNA typing: biology, technology, and genetics of STR markers (2nd Edition). Elsevier Academic Press, New York. Pp. 331-333.
  11. Calabrese, P. and R. Currett. 2003. Dinucleotide repeats in the drosophila and human genomes have complex, length-dependent mutation processes. Mol. Biol. Evol. 20: 715-725. https://doi.org/10.1093/molbev/msg084
  12. Chabane, K., G. A. Ablett, G. M. Cordeiro, J. Valkoun and R. J. Henry. 2005. EST versus genomic derived microsatellite markers for genotyping wild and cultivated barley. Genet. Resour. Crop. Evol. 52: 903-909. https://doi.org/10.1007/s10722-003-6112-7
  13. Cho, Y. -I., J. -H. Park, C. -W. Lee, W. -H. Ra, J. -W. Chung, J. -R. Lee, K. -H. Ma, S. -Y. Lee, K. -S. Lee, M. -C. Lee and Y. -J Park. 2011. Evaluation of the genetic diversity and population structure of sesame (Sesamum indicum L.) using microsatellite markers. Genes & Genomics 33: 2187-2195.
  14. Choi, H. S., Y. Y. Kim, K. N. Hong, Y. P. Hong and J. O. Hyun. 2005. Genetic structure of a population of Quercus acutissima in Korea revealed by microsatellite marker. Korean J. Genetics. 27: 267-271.
  15. Corujo, M., G. Blanco, E. Vazquez and J. A. Sanchez. 2004. Genetic structure of northwestern Spanish brown trout (Salmo trutta L.) populations, differences between microsatellite and allozyme loci. Hereditas 141: 258-271.
  16. Dakin, E. E. and J. C. Avise. 2004. Microsatellite null alleles in parentage analysis. Heredity 93: 504-509. https://doi.org/10.1038/sj.hdy.6800545
  17. Dewalt, S. J., E. Siemann and W. E. Rogers. 2011. Geographic distribution of genetic variation among native and introduced populations of Chinese tallow tree, Triadica sebifera (Euphorbiaceae). Am. J. Bot. 98: 1128-1138. https://doi.org/10.3732/ajb.1000297
  18. Diwan N. and P. B. Cregan. 1997. Automated sizing of fluorescent- labeled simple sequence repeat (SSR) markers to assay genetic variation in soybean. Theor. Appl. Genet. 95: 723-733. https://doi.org/10.1007/s001220050618
  19. Doganlar, S., A. Frary, M. -C. Daunay, R. N. Lester and S. D. Tanksley. 2002. A comparative genetic linkage map of eggplant (Solanum melongena) and its implications for genome evolution in the Solanaceae. Genetics 161: 1607-1711.
  20. Ellegren, H. 2000. Microsatellite mutations in the germline: implications for evolutionary inference. Trends. Genet. 16: 551-558. https://doi.org/10.1016/S0168-9525(00)02139-9
  21. Ellegren, H. 2004. Microsatellites: simple sequences with complex evolution. Nat. Rev. Genet. 5: 435-445.
  22. Feldman, M. W., A. Bergman, D. D. Pollock and D. B. Goldstein. 1997. Microsatellite genetic distances with range constraints: analytic description and problems of estimation. Genetics 145: 207-216.
  23. Gaino, A. P. S. C., A. M. Silva, M. A. Moraes, P. F. Alves, M. L. T. Moraes, M. L. M. Freitas and A. M. Sebbenn. 2010. Understanding the effects of isolation on seed and pollen flow, spatial genetic structure and effective population size of the dioecious tropical tree species Myracrodruon urundeuva. Conserv. Genet. 11: 1631-1643. https://doi.org/10.1007/s10592-010-0046-3
  24. Gao, L., J. Tang, H. Li and J. Jia. 2003. Analysis of microsatellites in major crops assessed by computational and experimental approaches. Mol. Breed. 12: 245-261. https://doi.org/10.1023/A:1026346121217
  25. Garza, J. C., M. Slatkin and N. B. Feimer. 1995. Microsatellite allele frequencies in humans and chimpanzees, with implications for constraints on allele size. Mol. Biol. Evol. 12: 594-603.
  26. Grisi, M. C. M., M. W. Blair, P. Gepts, C. Brondani, P. A. A. Pereira and R. P. V. Brondani. 2007. Genetic mapping of a new set of microsatellite markers in a reference common bean (Phaseolus vulgaris) population BAT93 x Jalo EEP558. Genet. Mol. Res. 6: 691-706.
  27. Gross, B. L., A. E. Schwarzbach and L. H. Rosenberg. 2003. Origin(s) of the diploid hybrid species Helianthus deserticola (Asteraceae). Amer. J. Bot. 90: 1708-1719. https://doi.org/10.3732/ajb.90.12.1708
  28. Gupta, P. K., H. S. Balyan, P. C. Sharma and B. Ramesh. 1996. Microsatellites in plants: a new class of molecular markers. Curr. Sci. 70: 45-54.
  29. Hause, X. Y. and M. Litt. 1993. A study of the origin of 'shadow band' seen when typing dinucleotide repeat polymorphisms by the PCR. Hum. Mol. Genet. 2: 411-415. https://doi.org/10.1093/hmg/2.4.411
  30. Hu, C. -T. and K. M. O'Shaughnessy. 2001. Glycerol-enhanced minipolyacrylamide gel electrophoresis for the separation of differentially expressed DNA fragments in cDNA representational difference analysis. Electrophoresis 22:1063-1068. https://doi.org/10.1002/1522-2683()22:6<1063::AID-ELPS1063>3.0.CO;2-S
  31. Hughes, M., M. Moller, T. J. Edwards, D. U. Bellstedt and M. De Villiers. 2007. The impact of pollination syndrome and habitat on gene flow: a comparative study of two Streptocarpus (Gesneriaceae) species. Am. J. Bot. 94: 1688-1695. https://doi.org/10.3732/ajb.94.10.1688
  32. Jarne, P. and P. J. L. Lagoda. 1996. Microsatellites, from molecules to populations and back. Trends Ecol. Evol. 11: 424-429. https://doi.org/10.1016/0169-5347(96)10049-5
  33. Kalia, R. K., M. K. Rai, S. Kalia, R. Singh and A. K. Dhawan. 2011. Microsatellite markers: an overview of the recent progress in plants. Euphytica 177: 309-334. https://doi.org/10.1007/s10681-010-0286-9
  34. Karp, A., P. G. Isaac and D. S. Ingram. 1998. Molecular tools for screening biodiversity: plants and animals. Chapman and Hall, London.
  35. Kim, H. S., K. G. Park, S. B. Baek, S. J. Suh and J. H. Nam. 2002. Genetic diversity of barley cultivars as revealed by SSR markers. Korean J. Crop. Sci. 47: 379-383.
  36. Kim, J. and K. W. Chung. 2007. Isolation of new microsatellite-containing sequences in Acanthopanax senticosus. J. Plant Biol. 50: 557-561. https://doi.org/10.1007/BF03030709
  37. Kim, J., B. H. Jo, K. L. Lee, E. S. Yoon, G. H. Ryu and K. W. Chung. 2007. Identification of new microsatellite markers in Panax ginseng. Mol. Cells. 24: 60-68.
  38. Kimmel, M. and R. Chakraborty. 1996. Measures of variation at DNA repeat loci under a general stepwise mutation model. Theor. Popul. Biol. 50: 345-367. https://doi.org/10.1006/tpbi.1996.0035
  39. Kimura, M. and J. F. Crow. 1964. The number of alleles that can be maintained in a finite population. Genetics 49: 725-738.
  40. Kimura, M. and T. Ohta. 1978. Stepwise mutational model and distribution of allelic frequencies in a finite population. Proc. Natl. Acad. Sci. USA. 75: 2868-2872. https://doi.org/10.1073/pnas.75.6.2868
  41. King, J., D. Thorogood, K. J. Edwards, I. P. Armstead, L. Roberts, K. Skot, Z. Hanley and I. P. King. 2008. Development of a genomic microsatellite library in perennial ryegrass (Lolium perenne) and its use in trait mapping. Ann. Bot. 101: 845-853. https://doi.org/10.1093/aob/mcn016
  42. Koch, M. A. and M. Kiefer. 2005. Genome evolution among cruciferous plants: a lecture from the comparison of the genetic maps of three diploid species - Capsella rubella, Arabidopsis lyrata subsp. petraea and Arabidopsis thaliana. Amer. J. Bot. 92: 761-767. https://doi.org/10.3732/ajb.92.4.761
  43. Kondo, H., T. Tahira, H. Hayashi, K. Oshima and K. Hayashi. 2000. Microsatellite genotyping of post-PCR fluorescently labeled markers. BioTechniques 29: 868-872.
  44. Kondo, T., N. Nakagoshi and Y. Isagi. 2009. Shaping of genetic structure along Pleistocene and modern river systems in the hydrochorous riparian azalea, Rhododendron ripense (Ericaceae). Am. J. Bot. 96: 1532-1543. https://doi.org/10.3732/ajb.0800273
  45. Kramer, A. T., J. B. Fant and M. V Ashley. 2010. Influences of landscape and pollinators on population genetic structure: examples from three Penstemon (Plantaginaceae) species in the Great Basin. Am. J. Bot. 98: 109-121.
  46. Kwak, M., J. Kami and P. Gepts. 2009. The putative Mesoamerican domestication center of Phaseolus vulgaris is located in the Lerma-Santiago basin of Mexico. Crop Sci. 49: 554-563. https://doi.org/10.2135/cropsci2008.07.0421
  47. Kwon, S. J., S. N. Ahn, J. P. Suh, H. C. Hong, Y. K. Kim, H. G. Hwang, H. P. Moon and H. C. Choi. 2000. Genetic diversity of Korean native rice varieties. Korean J. Breed. 32: 186-193.
  48. Kwon, Y. -S., J. -H. Hong and K. -J. Choi. 2011. Genetic diversity of Korean barley (Hordeum vulgare L.) varieties using microsatellite markers. Kor. J. Breed. Sci. 43: 243-250.
  49. Kwon, Y. -S., J. -M. Lee, G. -B. Yi, S. -I. Yi, K. -M. Kim, E. -H. Soh, K. -M. Bae, E. -K. Park, I. -H. Song and B. -D. Kim. 2005. Use of SSR markers to complement tests of distinctiveness, uniformity, and stability (DUS) of pepper (Capsicum annuum L.) varieties. Mol. Cells. 19: 428-435.
  50. Kwon, Y. -S., S. -G. Park and S. -I. Yi. 2009. Assessment of genetic variation among commercial tomato (Solanum lycopersicon) varieties using SSR markers and morphological characteristics. Genes & Genomics 31: 1-10. https://doi.org/10.1007/BF03191132
  51. Kwon, Y. -S., Y. -H. Oh, S. -I. Yi, H. -Y. Kim, J. -M. An, S. -G. Yang, S. -H. Ok and J. -S. Shin. 2010. Informative SSR makers for commercial variety discrimination in watermelon (Citrullus lanatus). Genes & Genomics 32: 115-122. https://doi.org/10.1007/s13258-008-0674-x
  52. Lagercrantz, U. and D. J. Lydiate. 1996. Comparative genome mapping in Brassica. Genetics 144: 1903-1910.
  53. Lee, D. -H., J. -H. Lee and B. -H. Choi. 2011. Isolation and characterization of 10 microsatellite loci from Korean Leontopodium japonicum (Asteraceae). Am. J. Bot. 98: e183-e184. https://doi.org/10.3732/ajb.1100065
  54. Lee, H., H. H. Cho, I. -C. Kim, J. H. Yim, H. K. Lee and Y. K. Lee. 2008. Expressed sequence tag analysis of antarctic hairgrass Deschampsia antarctica from King George Island, Antarctica. Mol. Cells. 25: 258-264.
  55. Lee, J. -H., M. -H. Park, G. -S. Min and B. -H. Choi. 2010. Isolation and characterization of 13 microsatellite loci from Korean Quercus acuta (Fagaceae). J. Plant Biol. 53: 201-204. https://doi.org/10.1007/s12374-010-9105-z
  56. Lee, J. K. and N. -S. Kim. 2007. Genetic diversity and relationships of cultivated and weedy types of Perilla frutescens collected from East Asia revealed by microsatellite marker. Korean J. Breed. Sci. 39: 491-499.
  57. Lee, K. M., Y. Y. Kim and J. O. Hyun. 2011. Genetic variation in populations of Populus davidiana Dode based on microsatellite marker analysis. Genes & Genomics 33: 163-171. https://doi.org/10.1007/s13258-010-0148-9
  58. Leimu, R., P. Mutikainen, J. Koricheva and M. Fiscer. 2006. How general are positive relationships between plant population size, fitness and genetic variation? J. Ecol. 94: 942-952. https://doi.org/10.1111/j.1365-2745.2006.01150.x
  59. Li, G., S. -W. Kwon, Y. M. Choi and Y. -J. Park. 2011. Genetic diversity analysis of mungbean accessions from east and central Asia using SSR markers. Korean J. Intl. Agri. 23: 185-191.
  60. Li, X., L. Shangguan, C. Song, C. Wang, Z. Gao, H. Yu and J. Fang. 2010. Analysis of expressed sequence tags from Prunus mume flower and fruit and development of simple sequence repeat markers. BMC Genet. 11: 66.
  61. Lindqvist, C., A. -C. Scheen, M. -J. Yoo, P. Grey, D. G. Oppenheimer, J. H. Leebens-Mack, D. E. Soltis, P. S. Soltis and V. A. Albert. 2006. An expressed sequence tag (EST) library from developing fruits of an Hawaiian endemic mint (Stenogyne rugosa, Lamiaceae): characterization and microsatellite markers. BMC Plant Biol. 6: 16. https://doi.org/10.1186/1471-2229-6-16
  62. Ma, K. -H., A. Dixit, Y. -C. Kim, D. -Y. Lee, T. -S. Kim, E. -G. Cho and Y. -J. Park. 2007. Development and characterization of new microsatellite markers for ginseng (Panax ginseng C. A. Meyer). Conserv. Genet. 8: 1507-1509. https://doi.org/10.1007/s10592-007-9284-4
  63. Magnuson, V. L., D. S. Ally, S. J. Nylund, Z. E. Karanjawala, J. B. Rayman, J. I. Knapp, A. L. Lowe, S. Ghosh and F. S. Collins. 1996. Substrate nucleotide-determined non-templated addition of adenine by Taq DNA polymerase: implications for PCR-based genotyping and cloning. BioTechniques 21: 700-709.
  64. Mandel, J. R. 2010. Clonal diversity, spatial dynamics, and small genetic population size in the rare sunflower, Helianthus verticillatus. Conserv. Genet. 11: 2055-2059. https://doi.org/10.1007/s10592-010-0062-3
  65. Matsumoto, T., W. Yukawa, Y. Nozaki, R. Nakashige, M. Shinya, S. Makino, M. Yagura, T. Ikuta, T. Imanishi, H. Inoko, G. Tamiya and T. Gogobori. 2004. Novel algorithm for automated genotyping of microsatellites. Nucl. Acids Res. 32: 6069-6077. https://doi.org/10.1093/nar/gkh946
  66. Matsuoka, Y., Y. Vigouroux, M. M. Goodman, G. J. Sanchez, E. Buckler and J. Doebley. 2002. A single domestication for maize shown by multilocus microsatellite genotyping. Proc. Natl. Acad. Sci. 99: 6080-6084. https://doi.org/10.1073/pnas.052125199
  67. Metzker, M. L. 2010. Sequencing technologies - the next generation. Genetics 11: 31-46.
  68. Moore, G., K. M. Devos, Z. Wang and M. D. Gale. 1995. Cereal genome evolution. Grasses, line up and form a circle. Curr. Biol. 5: 737-739. https://doi.org/10.1016/S0960-9822(95)00148-5
  69. Morgante, M. and A. M. Olivieri. 1993. PCR-amplified microsatellites as markers in plant genetics. Plant J. 3: 175-182. https://doi.org/10.1111/j.1365-313X.1993.tb00020.x
  70. Mudunuri, S. B., A. A. Rao, S. Pallamsetty, P. Mishra and H. A. Nagarajaram. 2009. VMD: viral microsatellite database-A comprehensive resource for all viral microsatellites. J. Comput. Sci. Syst. Biol. 2: 283-286. https://doi.org/10.4172/jcsb.1000043
  71. Murray, V., C. Monchawin and P. R. England. 1993. The determination of the sequences present in the shadow bands of a dinucleotide repeat PCR. Nucl. Acids Res. 21: 2395-2398. https://doi.org/10.1093/nar/21.10.2395
  72. Nauta, M. J. and F. J. Weissing. 1996. Constraints on allele size at microsatellite loci: implications for genetic differentiation. Genetics 143: 1021-1032.
  73. Navascues, M. and B. C. Emerson. 2005. Chloroplast microsatellites: measures of genetic diversity and the effect of homoplasy. Mol. Ecol. 14: 1333-1341. https://doi.org/10.1111/j.1365-294X.2005.02504.x
  74. Nishizawa, T., Y. Watano, E. Kinoshita and K. Ueda. 2005. Pollen movement in a natural population of Arisaema Serratum (Araceae), a plant with a pitfall-trap flower pollination system. Am. J. Bot. 92: 1114-1123. https://doi.org/10.3732/ajb.92.7.1114
  75. Nunome, T., S. Negoro, K. Miyatake, H. Yamaguchi and H. Fukuoka. 2006. A protocol for the construction of microsatellite enriched genomic library. Plant Mol. Biol. Rep. 24: 305-312. https://doi.org/10.1007/BF02913457
  76. Nybom, H. 2004. Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Mol. Ecol. 13: 1143-1155. https://doi.org/10.1111/j.1365-294X.2004.02141.x
  77. O'Connell, L. M. and K. Ritland. 2004. Somatic mutations at microsatellite loci in western redcedar (Thuja plicata: Cupressaceae) J. Hered. 95: 172-176. https://doi.org/10.1093/jhered/esh024
  78. Ohta, T. and M. Kimura. 1973. A model of mutation appropriate to estimate the number of electrophoretically detectable alleles in a finite population. Genet. Res. 22: 201-204. https://doi.org/10.1017/S0016672300012994
  79. Park, S. W., Y. S. Hyun and K. W. Chung. 2009. Genetic polymorphism of microsatellite markers in Panax ginseng C.A. Meyer. J. Ginseng Res. 33: 199-205. https://doi.org/10.5142/JGR.2009.33.3.199
  80. Parker, P. G., A. A. Snow, M. D. Schug, G. C. Booton and P. A. Fuerst. 1998. What molecules can tell us about populations: choosing and using a molecular marker. Ecology 79: 361-382.
  81. Peakall, R., S. Gilmore, W. Keys, M. Morgante and A. Rafalski. 1998. Cross-species amplification of soybean (Glycine max) simple sequence repeats (SSRs) within the genus and other legume genera: implications for the transferability of SSRs in plants. Mol. Biol. Evol. 15: 1275-1287. https://doi.org/10.1093/oxfordjournals.molbev.a025856
  82. Pfosser, M. F., J. Guzy-Wrobelska, B. -Y. Sun, T. F. Stuessy, T. Sugawara and N. Fujii. 2002. The origin of species of Acer (Sapindaceae) endemic to Ullung Island, Korea. Syst. Bot. 27: 351-367.
  83. Pollock, D. D., A. Bergman, M. W. Feldman and D. B. Goldstein. 1998. Microsatellite behavior with range constraints: parameter estimation and improved distances for use in phylogenetic reconstruction. Theor. Popul. Biol. 53: 256-271. https://doi.org/10.1006/tpbi.1998.1363
  84. Roa, A. C., P. Chavarriaga-Aguirre, M. C. Duque, M. M. Maya, M. W. Bonierbale, C. Iglesias and J. Tohme. 2000. Cross-species amplification of cassava (Manihot esculenta) (Euphorbiaceae) microsatellites: allelic polymorphism and degree of relationship. Am. J. Bot. 87: 1647-1655. https://doi.org/10.2307/2656741
  85. Saha, S., M. Karaca, J. N. Jenkins, A. E. Zipf, O. U. K. Reddy and R. V. Kantety. 2003. Simple sequence repeats as useful resources to study transcribed genes of cotton. Euphytica 130: 355-364. https://doi.org/10.1023/A:1023077209170
  86. Sakaguchi, S., Y. Takeuchi, M. Yamasaki, S. Sakurai and Y. Isagi. 2011. Lineage admixture during postglacial range expansion is responsible for the increased gene diversity of Kalopanax septemlobus in a recently colonised territory. Heredity 107: 338-348. https://doi.org/10.1038/hdy.2011.20
  87. Schlotterer, C. 2000. Evolutionary dynamics of microsatellite DNA. Chromosoma 109: 365-371. https://doi.org/10.1007/s004120000089
  88. Schotter, C. 2004. The evolution of molecular markers - just a matter of fashion? Nat. Rev. Genet. 5: 63-69. https://doi.org/10.1038/nrg1249
  89. Schotter, C. and D. Tautz. 1992. Slippage synthesis of simple sequence DNA. Nucl. Acids Res. 20: 211-215. https://doi.org/10.1093/nar/20.2.211
  90. Schuelke, M. 2000. An economic method for the fluorescent labeling of PCR fragments. Nat. Biotechnol. 18: 233-234. https://doi.org/10.1038/72708
  91. Schug, M. D., T. F. C. Mackay and C. F. Aquadro. 1997. Low mutation rates of microsatellite loci in Drosophila melanogaster. Nat. Genet. 15: 99-102. https://doi.org/10.1038/ng0197-99
  92. Scott, K. D., P. Eggler, G. Seaton, M. Rossetto, E. M. Ablett, L. S. Lee and R. J. Henry. 2000. Analysis of SSRs derived from grape ESTs. Theor. Appl. Genet. 100: 723-726. https://doi.org/10.1007/s001220051344
  93. Shokeen, B., S. Choudhary, N. K. Sethy and S. Bhatia. 2011. Development of SSR and gene-targeted markers for construction of a framework linkage map of Catharanthus roseus. Ann. Bot. 108: 321-336. https://doi.org/10.1093/aob/mcr162
  94. Shriver, M. D., L. Jin, R. Chakraborty and E. Boerwinkle. 1993. VNTR allele frequency distribution under the stepwise mutation model: a computer simulation approach. Genetics 134: 983-993.
  95. Siragusa, M. and F. Carini. 2009. Development of specific primers for cpSSR analysis in caper, olive and grapevine using consensus chloroplast primer pairs. Sci. Hortic. 120: 14-21. https://doi.org/10.1016/j.scienta.2008.09.002
  96. Sorrells, M. E., M. La Rota, C. E. Bermudez-Kandianis, R. A. Greene, R. Kantety, J. D. Munkvold, Miftahudin, A. Mahmoud, X. Ma, P. J. Gustafson, L. L. Qi, B. Echalier, B. S. Gill, D. E. Matthews, G. R. Lazo, Chao S, O. D. Anderson, H. Edwards, A. M. Linkiewicz, J. Dubcovsky, E. D. Akhunov, J. Dvorak, D. Zhang, H. T. Nguyen, J. Peng, N. L. Lapitan, J. L. Gonzalez-Hernandez, J. A. Anderson, K. Hossain, V. Kalavacharla, S. F. Kianian, D. W. Choi, T. J. Close, M. Dilbirligi, K. S. Gill, C. Steber, M. K. Walker- Simmons, P. E. McGuire and C. O. Qualset. 2003. Comparative DNA sequence analysis of wheat and rice genomes. Genome Res. 13: 1818-1827.
  97. Stefanini, F. M. and M. W. Feldman. 2000. Bayesian estimation of range for microsatellite loci. Genet. Res. 75: 167-177. https://doi.org/10.1017/S0016672399004280
  98. Strand, M., T. A. Prolla, R. M. Liskay and T. D. Petes. 1993. Destabilization of tracts of simple repetitive DNA in yeast by mutation affecting DNA mismatch repair. Nature 365: 274-276. https://doi.org/10.1038/365274a0
  99. Sunnucks, P. 2000. Efficient genetic markers for population biology. Trends Ecol. Evol. 15: 199-203. https://doi.org/10.1016/S0169-5347(00)01825-5
  100. Takayama, K., B. -Y. Sun and T. F. Stuessy. 2011. Genetic consequences of anagenetic speciation in Acer okamotoanum (Sapindaceae) on Ullung Island, Korea. Ann Bot. doi: 10.1093/aob/mcr280.
  101. Tanksley, S. D., M. W. Ganal, J. P. Prince, M. C. de Vicente, M. W. Bonierbale, P. Broun, T. M. Fulton, J. J. Giovannoni, S. Grandillo, G. B. Martin, R. Messeguer, J. C. Miller, L. Miller, A. H. Paterson, O. Pineda, M. S. Roder, R. A. Wing, W. Wu and N. D. Young. 1992. High density molecular linkage maps of the tomato and potato genomes. Genetics 132: 1141-1160.
  102. Tanksley, S. D., R. Bernatzky, N. L. Lapitan and J. P. Prince. 1988. Conservation of gene repertoire but not gene order in pepper and tomato. Proc. Natl. Acad. Sci. USA. 85: 6419-6423. https://doi.org/10.1073/pnas.85.17.6419
  103. Tehrani, M. S., M. M. Mardi, J. Sahebi, P. Catalan and A. Diaz -Perez. 2009. Genetic diversity and structure among Iranian tall fescue populations based on genomic-SSR and EST-SSR marker analysis. Plant. Syst. Evol. 282: 57-70. https://doi.org/10.1007/s00606-009-0207-3
  104. Thiel, T., W. Michalek, R. K. Varshney and A, Graner. 2003. Exploiting EST databases for the development of cDNA derived microsatellite markers in barley (HordeumvulgareL.) Theor. Appl. Genet. 106: 411-422.
  105. Thuillet, A. -C., D. Bru, J. David, P. Roumet, S. Santoni, P. Sourdille and T. Bataillon. 2002. Direct estimation of mutation rate for 10 microsatellite loci in durum wheat, Triticum turgidum (L.) Thell. ssp durum desf. Mol. Biol. Evol. 19: 122-125. https://doi.org/10.1093/oxfordjournals.molbev.a003977
  106. Valdes, A. M., M. Slatkin and N. B. Freimer. 1993. Allele frequencies at microsatellite loci: the stepwise mutation model revisited. Genetics 133: 737-749.
  107. Varshney, R. K., A. Graner and M. E. Sorrells. 2005. Genic microsatellite markers in plants: features and applications. Trends Biotechnol. 23: 48-55. https://doi.org/10.1016/j.tibtech.2004.11.005
  108. Vigouroux, Y., J. S. Jaqueth, Y. Matsuoka, O. S. Smith, W. D. Beavis, J. Stephen, C. Smith and J. Doebley. 2002. Rate and pattern of mutation at microsatellite loci in Maize. Mol. Biol. Evol. 19: 1251-1260. https://doi.org/10.1093/oxfordjournals.molbev.a004186
  109. Volfovsky, N., B. J. Haas and S. L. Salzberg. 2001. A clustering method for repeat analysis in DNA sequences. Genome Biol. 2: research0027.1-0027.11. https://doi.org/10.1186/gb-2001-2-8-research0027
  110. Wang, D., J. Shi, S. R. Carlson, P. B. Cregan, R. W. Ward and B. W. Diers. 2003. A low-cost, high-throughput polyacrylamide gel electrophoresis system for genotyping with microsatellite DNA markers. Crop sci. 43: 1828-1832. https://doi.org/10.2135/cropsci2003.1828
  111. Wang, M. L., N. A. Barkley and T. M. Jenkins. 2009. Microsatellite markers in plants and insects. Part I: applications of biotechnology. Genes, Genomes and Genomics 3: 54-67.
  112. Wordley, C., J. Slate and J. Stapley. 2011. Mining online genomic resources in Anolis carolinensis facilitates rapid and inexpensive development of cross-species microsatellite markers for the Anolis lizard genus. Mol. Ecol. Res. 11: 126-133. https://doi.org/10.1111/j.1755-0998.2010.02863.x
  113. Wu, D. Y., L. Ugozzoli, B. K. Pal and R. B. Wallace. 1991. The effect of temperature and oligonucleotide primer length on the specificity and efficiency of amplification by the polymerase chain reaction. DNA. Cell. Biol. 10: 233-238.
  114. Wu, K. -S. and S. D. Tanksley. 1993. Abundance polymorphism and genetic mapping of microsatellites in rice. Mol. Gen. Genet. 241: 225-235. https://doi.org/10.1007/BF00280220
  115. Yu, J. -N., C. Won, J. Jun, Y. Lim and M. Kwak. 2011. Fast and cost-effective mining of microsatellite markers using NGS technology: an example of a Korean water deer hydropotes inermis argyropus. PLoS ONE 6: e26933. doi:10.1371/journal.pone.0026933.
  116. Zane, L., L. Bargelloni and T. Patarnello. 2002. Strategies for microsatellite isolation: a review. Mol. Ecol. 11: 1-16. https://doi.org/10.1046/j.0962-1083.2001.01418.x
  117. Zeng, L., T. -R. Kwon, X. Liu, C. Wilson, C. M. Grieve and G. B. Gregorio. 2004. Genetic diversity analyzed by microsatellite markers among rice (Oryza sativa L.) genotypes with different adaptations to saline soils. Plant Sci. 166: 1275-1285. https://doi.org/10.1016/j.plantsci.2004.01.005
  118. Zhao, X. and G. Kochert. 1993. Phylogenetic distribution and genetic mapping of a $(GGC)_n$ microsatellite from rice (Oryza sativa L.). Plant Mol. Biol. 21: 607-614. https://doi.org/10.1007/BF00014544
  119. Zhivotovsky, L. A. 1999. A new genetic distance with application to constrained variation at microsatellite loci. Mol. Biol. Evol. 16: 467-471. https://doi.org/10.1093/oxfordjournals.molbev.a026128
  120. Zhivotovsky, L. A., A. bennett, A. M. Bowcock and M. W. Feldman. 2000. Human population expansion and microsatellite variation. Mol. Biol. Evol. 7: 757-767.
  121. Zhu, H., H. -K. Choi, D. R. Cook and R. C. Shoemaker. 2005. Bridging model and crop legumes through comparative genomics. Plant Physiol. 137: 1189-1196. https://doi.org/10.1104/pp.104.058891