DOI QR코드

DOI QR Code

Application of Reverse Transcription Droplet Digital PCR for Detection and Quantification of Tomato Spotted Wilt Virus

Reverse Transcription Droplet Digital PCR을 활용한 Tomato Spotted Wilt Virus 검출 및 정량

  • Lee, Hyo-Jeong (Department of Applied Biology, Institute of Environmentally Friendly Agriculture, Chonnam National University) ;
  • Park, Ki Beom (Invirustech) ;
  • Han, Yeon Soo (Department of Applied Biology, Institute of Environmentally Friendly Agriculture, Chonnam National University) ;
  • Jeong, Rae-Dong (Department of Applied Biology, Institute of Environmentally Friendly Agriculture, Chonnam National University)
  • 이효정 (전남대학교 응용생물학과) ;
  • 박기범 ((주)인바이러스테크) ;
  • 한연수 (전남대학교 응용생물학과) ;
  • 정래동 (전남대학교 응용생물학과)
  • Received : 2021.08.23
  • Accepted : 2021.09.29
  • Published : 2021.09.30

Abstract

Plant viruses cause significant yield losses, continuously compromising crop production and thus representing a serious threat to global food security. Tomato spotted wilt virus (TSWV) is the most harmful plant virus that mainly infects horticultural crops and has a wide host range. Reverse-transcription quantitative real-time PCR (RT-qPCR) has been widely used for detecting TSWV with high sensitivity, but its application is limited owing to the lack of standardization. Therefore, in this study, a sensitive and accurate reverse transcription droplet digital polymerase chain reaction (RT-ddPCR) method was established for TSWV detection. Additionally, we compared the sensitivities of RT-qPCR and RT-ddPCR for TSWV detection. Specificity analysis of RT-ddPCR for TSWV showed no amplification for main pepper viruses and negative control. TSWV transcripts levels measured by RT-ddPCR and RT-qPCR showed a high degree of linearity; however, the former yielded results that were at least 10-fold more sensitive and detected lower TSWV copy numbers than the latter. Collectively, our findings show that RT-ddPCR provides improved analytical sensitivity and specificity for TSWV detection, making it suitable for identifying low TSWV concentrations in field samples.

식물 바이러스는 작물 수확량에 상당한 손실을 일으키고 작물 생산을 지속적으로 위협하여 세계 식량 안보에 심각한 위협이 된다. 그 중 tomato spotted wilt virus (TSWV)는 주로 원예작물을 감염시키는 가장 위협적인 식물 바이러스로 넓은 기주 범위를 가진다. Reverse-transcription quantitative real-time PCR (RT-qPCR)은 TSWV의 민감한 검출을 위해 널리 사용되고 있지만 표준화의 어려움으로 인해 유용성이 감소한다. 따라서 본 연구에서는 TSWV 검출을 위해 민감하고 정확한 reverse transcription droplet digital polymerase chain reaction (RT-ddPCR)을 확립하였다. TSWV 검출에 대한 RT-qPCR 및 RT-ddPCR의 민감도를 비교하였고, TSWV에 대한 RT-ddPCR의 특이성 분석은 고추에서 주로 발생하는 바이러스 및 음성 대조군에서 특이성을 확인한 결과 증폭되지 않았다. RT-ddPCR 및 RTqPCR에 의해 측정된 TSWV의 선형회귀곡선은 모두 높은 선형성을 나타냈지만, RT-ddPCR 분석이 10배 이상 더 민감하고 더 낮은 TSWV의 copy 수를 검출할 수 있었다. 종합적으로, 우리의 연구 결과는 RT-ddPCR이 TSWV 검출에 대해 높은 민감도와 특이성을 제공하고 낮은 농도의 현장 시료에서 TSWV 검출하는 데 적합하다는 것을 보여준다.

Keywords

Acknowledgement

This work was carried out with the support of Cooperative Research Program for Agriculture Science and Technology Development (Project No. PJ014947032021) Rural Development Administration, Republic of Korea.

References

  1. Ali, M. E., Hashim, U., Mustafa, S., Man, Y. B. C., Dhahi, T. S., Kashif, M. et al. 2012. Analysis of pork adulteration in commercial meat-balls targeting porcine-specific mitochondrial cytochrome b gene by TaqMan probe real-time polymerase chain reaction. Meat Sci. 91: 454-459. https://doi.org/10.1016/j.meatsci.2012.02.031
  2. Bahder, B. W., Zalom, F. G., Jayanth, M. and Sudarshana, M. R. 2016. Phylogeny of geminivirus coat protein sequences and digital PCR aid in identifying Spissistilus festinus as a vector of grapevine red blotch-associated virus. Phytopathology 106: 1223-1230. https://doi.org/10.1094/PHYTO-03-16-0125-FI
  3. Baker, M. 2012. Digital PCR hits its stride. Nat. Methods 9: 541-544. https://doi.org/10.1038/nmeth.2027
  4. Cho, J.-D., Kim, J.-S., Kim, J.-Y., Kim, J.-H., Lee, S.-H., Choi, G.-S. et al. 2005. Occurrence and symptoms of tomato spotted wilt virus on vegetables in Korea (I). Res. Plant Dis. 11: 213-216. https://doi.org/10.5423/RPD.2005.11.2.213
  5. Cho, J. J., Mau, R. F. L., Hamasaki, R. T. and Gonsalves, D. 1988. Detection of tomato spotted wilt virus in individual thrips by enzyme-linked immunosorbent assay. Phytopathology 78: 1348-1352. https://doi.org/10.1094/Phyto-78-1348
  6. Debreczeni, D. E., Ruiz-Ruiz, S., Aramburu, J., Lopez, C., Belliure, B., Galipienso, L. et al. 2011. Detection, discrimination and absolute quantitation of tomato spotted wilt virus isolates using real time RT-PCR with TaqMan MGB probes. J. Virol. Methods 176: 32-37. https://doi.org/10.1016/j.jviromet.2011.05.027
  7. Dube, S., Qin, J. and Ramakrishnan, R. 2008. Mathematical analysis of copy number variation in a DNA sample using digital PCR on a nanofluidic device. PLoS ONE 3: e2876. https://doi.org/10.1371/journal.pone.0002876
  8. Fan, H. C. and Quake, S. R. 2007. Detection of aneuploidy with digital polymerase chain reaction. Anal. Chem. 79: 7576-7579. https://doi.org/10.1021/ac0709394
  9. Floren, C., Wiedemann, I., Brenig, B., Schutz, E. and Beck, J. 2015. Species identification and quantification in meat and meat products using droplet digital PCR (ddPCR). Food Chem. 173: 1054-1058. https://doi.org/10.1016/j.foodchem.2014.10.138
  10. Fukuta, S., Ohishi, K., Yoshida, K., Mizukami, Y., Ishida, A. and Kanbe, M. 2004. Development of immunocapture reverse transcription loop-mediated isothermal amplification for the detection of tomato spotted wilt virus from chrysanthemum. J. Virol. Methods 121: 49-55. https://doi.org/10.1016/j.jviromet.2004.05.016
  11. Gutierrez-Aguirre, I., Racki, N., Dreo, T. and Ravnikar, M. 2015. Droplet digital PCR for absolute quantification of pathogens. In: Plant Pathology: Methods in Molecular Biology, Vol. 1302, ed. by C. Lacomme, pp. 331-347. Humana Press, New York, NY, USA.
  12. Han, J.-H., Choi, H.-S., Lee, J., Kim, J.-D., Lee, W. P., Choi, H.-S. et al. 2012. Screening of tomato spotted wilt virus resistance in tomato accessions. Korean J. Hortic. Sci. Technol. 30: 171-177. https://doi.org/10.7235/hort.2012.11126
  13. Han, J.-H., Lee, W. P., Lee, J., Kim, M.-K., Choi, H.-S. and Yoon, J. B. 2011. Symptom and resistance of cultivated and wild Capsicum accessions to tomato spotted wilt virus. Res. Plant Dis. 17: 59-65. https://doi.org/10.5423/RPD.2011.17.1.059
  14. Higuchi, R., Fockler, C., Dollinger, G. and Watson, R. 1993. Kinetic PCR analysis: real-time monitoring of DNA amplification reactions. Bio/Technology 11: 1026-1030.
  15. Hindson, B. J., Ness, K. D., Masquelier, D. A., Belgrader, P., Heredia, N. J., Makarewicz, A. J. et al. 2011. High-throughput droplet digital PCR system for absolute quantitation of DNA copy number. Anal. Chem. 83: 8604-8610. https://doi.org/10.1021/ac202028g
  16. Hull, R. 2013. Plant Virology. Academic Press, San Diego, CA, USA. 1118 pp.
  17. Karavina, C. and Gubba, A. 2017. Detection and characterization oftomato spotted wilt virus infecting field and greenhouse-grown crops in Zimbabwe. Eur. J. Plant Pathol. 149: 933-944. https://doi.org/10.1007/s10658-017-1243-4
  18. Kim, J.-H., Choi, G.-S., Kim, J.-S. and Choi, J.-K. 2004. Characterization of tomato spotted wilt virus from paprika in Korea. Plant Pathol. J. 20: 297-301. https://doi.org/10.5423/PPJ.2004.20.4.297
  19. Kurstak, E. 1981. Handbook of Plant Virus Infections: Comparative Diagnosis. Elsevier, Amsterdam, The Netherlands. 944 pp.
  20. Lee, H.-J., Cho, I.-S., Ju, H.-J. and Jeong, R.-D. 2021a. Development of a reverse transcription droplet digital PCR assay for sensitive detection of peach latent mosaic viroid. Mol. Cell. Probes 58: 101746. https://doi.org/10.1016/j.mcp.2021.101746
  21. Lee, H.-J., Cho, I.-S., Ju, H.-J. and Jeong, R.-D. 2021b. Rapid and visual detection of tomato spotted wilt virus using recombinase polymerase amplification combined with lateral flow strips. Mol. Cell. Probes 57: 101727. https://doi.org/10.1016/j.mcp.2021.101727
  22. Liu, Y., Wang, Y., Wang, Q., Zhang, Y., Shen, W., Li, R. et al. 2019. Development of a sensitive and reliable reverse transcription droplet digital PCR assay for the detection of citrus yellow vein clearing virus. Arch. Virol. 164: 691-697. https://doi.org/10.1007/s00705-018-04123-7
  23. Mehle, N., Dobnik, D., Ravnikar, M. and Novak, M. P. 2018. Validated reverse transcription droplet digital PCR serves as a higher order method for absolute quantification of potato virus Y strains. Anal. Bioanal. Chem. 410: 3815-3825. https://doi.org/10.1007/s00216-018-1053-3
  24. Morrison, T., Hurley, J., Garcia, J., Yoder, K., Katz, A., Roberts, D. et al. 2006. Nanoliter high throughput quantitative PCR. Nucleic Acids Res. 34: e123. https://doi.org/10.1093/nar/gkl639
  25. Nakano, M., Komatsu, J., Matsuura, S.-I., Takashima, K., Katsura, S. and Mizuno, A. 2003. Single-molecule PCR using water-in-oil emulsion. J. Biotechnol. 102: 117-124. https://doi.org/10.1016/S0168-1656(03)00023-3
  26. Oetting, R. 1991. The effect of host species and different plant components on thrips feeding and development. In: Voris-Thrips-Plant Interaction of Tomato Spotted Wilt Virus, Proceedings of a USDA Workshop, eds. by H. Hsu and R. H. Lawson, pp. 15-19. ARS-US Department of Agriculture, Agricultural Research Service, Beltsville, MD, USA.
  27. Ottesen, E. A., Hong, J. W., Quake, S. R. and Leadbetter, J. R. 2006. Microfluidic digital PCR enables multigene analysis of individual environmental bacteria. Science 314: 1464-1467. https://doi.org/10.1126/science.1131370
  28. Pandey, B., Mallik, I. and Gudmestad, N. C. 2020. Development and application of a real-time reverse-transcription PCR and droplet digital PCR assays for the direct detection of potato mop top virus in soil. Phytopathology 110: 58-67. https://doi.org/10.1094/phyto-05-19-0185-fi
  29. Parrella, G., Gognalons, P., Gebre-Selassie, K., Vovlas, C. and Marchoux, G. 2003. An update of the host range of tomato spotted wilt virus. J. Plant Pathol. 85: 227-264.
  30. Peters, D., De Avila, A. C., Kitajima, E. W., Resende, R. O., De Haan, P. and Goldbach, R. 1991. An overview of tomato spotted wilt virus. In: Voris-Thrips-Plant Interaction of Tomato Spotted Wilt Virus, Proceedings of a USDA Workshop, eds. by H. Hsu and R. H. Lawson, pp. 1-14. ARS-US Department of Agriculture, Agricultural Research Service, Beltsville, MD, USA.
  31. Pinheiro, L. B., Coleman, V. A., Hindson, C. M., Herrmann, J., Hindson, B. J., Bhat, S. et al. 2012. Evaluation of a droplet digital polymerase chain reaction format for DNA copy number quantification. Anal. Chem. 84: 1003-1011. https://doi.org/10.1021/ac202578x
  32. Roberts, C. A., Dietzgen, R. G., Heelan, L. A. and Maclean, D. J. 2000. Real-time RT-PCR fluorescent detection of tomato spotted wilt virus. J. Virol. Methods 88: 1-8. https://doi.org/10.1016/S0166-0934(00)00156-7
  33. Sastry, K. S. and Zitter, T. A. 2014. Plant Virus and Viroid Diseases in the Tropics. Vol. 2. Epidemiology and Management. Springer Science & Business Media, New York, NY, USA. 489 pp.
  34. Vogelstein, B. and Kinzler, K. W. 1999. Digital PCR. Proc. Natl. Acad. Sci. U. S. A. 96: 9236-9241. https://doi.org/10.1073/pnas.96.16.9236
  35. Warren, L., Bryder, D., Weissman, I. L. and Quake, S. R. 2006. Transcription factor profiling in individual hematopoietic progenitors by digital RT-PCR. Proc. Natl. Acad. Sci. U. S. A. 103: 17807-17812. https://doi.org/10.1073/pnas.0608512103
  36. Yang, R., Paparini, A., Monis, P. and Ryan, U. 2014. Comparison of next-generation droplet digital PCR (ddPCR) with quantitative PCR (qPCR) for enumeration of Cryptosporidium oocysts in faecal samples. Int. J. Parasitol. 44: 1105-1113. https://doi.org/10.1016/j.ijpara.2014.08.004