• Title/Summary/Keyword: Analytic solution

Search Result 628, Processing Time 0.027 seconds

An Analytic Solution of the Shape of a Partially Filled, Submerged Membrane Container (수중 유체저장용 막구조물 형상의 이론적 해석)

  • Choi, Yoon-Rak
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.5
    • /
    • pp.39-43
    • /
    • 2008
  • For a partially filled and deeply submersed membrane container, an analytic solution for similarity shape was studied. The static shape of a membrane container can be expressed as a set of nonlinear ordinary differential equations. These equations are combined into an integrable equation. The solution of the equation is derived in terms of elliptic integrals, the arguments of which contain an unknown at the point of inflection. The point of inflection is determined by using the boundary condition at a separating point. Some characteristic values of the similarity shape were evaluated and the shapes are illustrated.

An Analytic Solution of the Shape of an Inclined, Partially Filled Membrane Container (경사면에 놓인 유체 저장용 막구조물 형상의 이론적 해석)

  • Choi, Yoon-Rak
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.1 s.74
    • /
    • pp.45-50
    • /
    • 2007
  • For a long partially-filled membrane container on an incline, the analytic solution of the similarity shape is studied. The nonlinear equation is solved and its solution is expressed as elliptic integrals, which include an unknown at the point of inflection. The point of inflection is determined by using the boundary condition at the upper separating point. Some characteristic values of the universal shape are evaluated, as the functions of inclination angle and shapes are illustrated for some cases.

Analysis of Broad- Band Grating Filter Response in Integrated Optics (집적 광학용 광대역 격자 필터의 해석)

  • 김언균;신상균
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.19 no.6
    • /
    • pp.55-61
    • /
    • 1982
  • An analytic solution for the spectral response of linearly-chirped grating filter is derived, which takes the finite physical length of filter into account. In the usual case of broad-band linearly-chirped grating filter the analytic solution is expressed in terms of elementary functions, by approximating asymptotically the involved parabolic cylinder functions over different ranges of its argument. It is also shown that derived results are general enough to include previously-available approximations as particular cases, and that they agree well with the numerical solutions based upon the Runge-Kutta method.

  • PDF

Bond-Slip Model for FRP-Concrete Interlace I: Theoretical Approach (FRP-콘크리트 계면의 부착모델 I: 이론적 연구)

  • 조근희;조정래;김병석;이영호;진원종;김성태
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.853-858
    • /
    • 2003
  • A new method is proposed to obtain bond-slip model for an adhesive joint between FRP and concrete. Interface element, which can describe the bond behavior, is developed in order to overcome the restriction that complex constitutive relations cannot be modeled in analytic solution. Calibrating numerical bond-slip model to experimental results, multi-objective optimization problem is constructed by physical programming method, and is solved using genetic algorithm. The validity of proposed method is demonstrated by comparing known analytic solution and numerically optimized solution.

  • PDF

A Study on Solution Methods of Two-stage Stochastic LP Problems

  • Lee, Sang-Jin
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.22 no.1
    • /
    • pp.1-24
    • /
    • 1997
  • In this paper, we have proposed new solution methods to solve TSLP (two-stage stochastic linear programming) problems. One solution method is to combine the analytic center concept with Benders' decomposition strategy to solve TSLP problems. Another method is to apply an idea proposed by Geoffrion and Graves to modify the L-shaped algorithm and the analytic center algorithm. We have compared the numerical performance of the proposed algorithms to that of the existing algorithm, the L-shaped algorithm. To effectively compare those algorithms, we have had computational experiments for seven test problems.

  • PDF

ANALYTIC TRAVELLING WAVE SOLUTIONS OF NONLINEAR COUPLED EQUATIONS OF FRACTIONAL ORDER

  • AN, JEONG HYANG;LEE, YOUHO
    • Honam Mathematical Journal
    • /
    • v.37 no.4
    • /
    • pp.411-421
    • /
    • 2015
  • This paper investigates the issue of analytic travelling wave solutions for some important coupled models of fractional order. Analytic travelling wave solutions of the considered model are found by means of the Q-function method. The results give us that the Q-function method is very simple, reliable and effective for searching analytic exact solutions of complex nonlinear partial differential equations.

MAXIMAL DOMAINS OF SOLUTIONS FOR ANALYTIC QUASILINEAR DIFFERENTIAL EQUATIONS OF FIRST ORDER

  • Han, Chong-Kyu;Kim, Taejung
    • Journal of the Korean Mathematical Society
    • /
    • v.59 no.6
    • /
    • pp.1171-1184
    • /
    • 2022
  • We study the real-analytic continuation of local real-analytic solutions to the Cauchy problems of quasi-linear partial differential equations of first order for a scalar function. By making use of the first integrals of the characteristic vector field and the implicit function theorem we determine the maximal domain of the analytic extension of a local solution as a single-valued function. We present some examples including the scalar conservation laws that admit global first integrals so that our method is applicable.

An Improved Analytic Model for Power System Fault Diagnosis and its Optimal Solution Calculation

  • Wang, Shoupeng;Zhao, Dongmei
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.89-96
    • /
    • 2018
  • When a fault occurs in a power system, the existing analytic models for the power system fault diagnosis could generate multiple solutions under the condition of one or more protective relays (PRs) and/or circuit breakers (CBs) malfunctioning, and/or an alarm or alarms of these PRs and/or CBs failing. Therefore, this paper presents an improved analytic model addressing the above problem. It takes into account the interaction between the uncertainty involved with PR operation and CB tripping and the uncertainty of the alarm reception, which makes the analytic model more reasonable. In addition, the existing analytic models apply the penalty function method to deal with constraints, which is influenced by the artificial setting of the penalty factor. In order to avoid the penalty factor's effects, this paper transforms constraints into an objective function, and then puts forward an improved immune clonal multi-objective optimization algorithm to solve the optimal solution. Finally, the cases of the power system fault diagnosis are served for demonstrating the feasibility and efficiency of the proposed model and method.

A Study on an Optimization of Welding Process Parameters by using an Analytic Solution for the Welding Angular Distortion (용접 각 변형량 해석해를 이용한 용접 공정변수 최적화에 관한 연구)

  • 이세환
    • Journal of Welding and Joining
    • /
    • v.21 no.7
    • /
    • pp.42-48
    • /
    • 2003
  • Welding distortion is a current issue in many industrial parts, especially for heavy industry such as shipbuilding, plant industry. The welding process has many processing parameters influencing welding angular distortion such as heat input power, welding speed, gas flow rate, plate thickness and the welded material properties, etc. In this work, the conventional local minimization concept was applied to find a set of optimum welding process parameters, consisted of welding speed, plate thickness and heat input, for a minimum angular distortion. An analytic solution for welding angular distortion, which is based on laminated plate theory, was also applied to investigate and optimize the welding process parameters. The optimized process parameters and the angular distortion for various parametric conditions could be easily found by using the local minimum concept.