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A Study on Solution Methods of Two-stage
Stochastic LP Problems

Sang Jin Lee*

Abstract

In this paper. we have proposed new solution methods to solve TSLP(two-stage stochastic linear
programming) problems, One solution method is to combine the analytic center concept with Benders’
decomposition strategy to solve TSLP problems. Another method is to apply an idea proposed by Geoffrion
and Graves to modify the L-shaped algorithm and the analytic center algorithm, We have compared the
numerical performance of the proposed algorithms to that of the existing algorithm, the L-shaped algorithm.

To effectively compare those algorithms, we have had computational experiments for seven test problems.

1. Introduction

Business managers are required to deal with uncertainty inherent in decision making because of
rapid changes in today's environments. For example. investment managers might be thought of as
making portfolio decisions against alternative futures, called scenarios, which capture possible
outcomes of uncertain parameters such as external cash flows, interest rates, and/or legal/policy
restrictions. They must make decisions on the basis of existing information about such uncertain
parameters, without the opportunity to make additional observation of future realizations, This investment
problem can be formulated as a two-stage stochastic linear programming problem(TSLP problem).

In addition to financial planning problems, there are several situations that require decision making
under uncertainty such as facility location, agriculture management, aircraft allocation, flood control,
energy investment, gas distribution, environment and natural resources planning(see {11,12] for a

detailed description of such applications).
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This paper has two-fold objectives. One is to propose and test new solution methods for TSLP
problem, The linear cutting plane algorithm to solve TSLP problem is known for its slow
convergence. (see [20,33.35]) This disadvantage has motivated researchers to develop methods which
have faster convergence utilizing nonliner programming techniques such as the progressive hedging
algorithm [26,28], the bundle decomposition algorithm [6,7], and the regularized decomposition
algorithm  [293031]. Here, we will develop another nonlinear technique, “the analytic center
algorithm,” to solve TSLP problems. There have been some recent theoretical advances in solution
methods for convex nondifferentiable problems, in particular, applying the analytic center concept.
Our solution methed is to combine the analytic center concept with Benders' decomposition strategy
to solve TSLP problem. The other objective is to apply an idea due to Geoffrion and Graves [13] to
enhance the efficiency of the L-shaped algorithm and the analytic center algorithm. To expediate
their idea, the variation to the L-shaped algorithm and the relaxation strategy to the analytic center
algorithm are proposed,

In this paper, we will deal with only a two-stage problem. Any multistage problem can be
reformulate into an equivalent two-stage problem. An equivalent two-stage problem can be
formulated by making the second stage objective include the expected value of latter stage objective.
The two-stage problem forms are quite important because numerous applications require only two or
three stages, either per se, or as a result of formulating an equivalent two-stage or three-stage

problem for a multiperiod situation [38].

2. Two-stage Stochastic LP Problems

2.1. Mathematical Formulation of TSLP Problems

The two-stage stochastic linear program with fixed recourse was first formulated by Dantzig [8]
and Beale [2]. Walkup and Wets[35] generalized it by introducing a random recourse matrix.

Consider the following example of a two-stage stochastic program with random recourse:

min z=cix; + X, f,:l pa w)cx( w)xa( w)
s.t. (2.1)
Axy =b;

Bi( @)x1+ A2 w)xe( ) =bs( @)
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x 20, x( @) =20, we £={1, ... L}

where c; is a known vector in R™, by is a known vector in R™, and A; is a known matrix in
R™ For each @, co( @) € R ™ and by(w) € R ™ A)( @) and Bi( w) are matrices
of sizes mo( @) x n:( @) and n:( @) x ny, respectively, with a discrete probability distribution p2
( @) such that the sum of p2( @) over all @ is equal to unity. It is worthwhile to consider discrete
random variables in our research since there are several practical applications such as financial
planning problems [25.26,27.40] based on discrete random variables, Moreover, usual solution

procedures for stochastic programs with continuous random variables discretize the problems either by

approzimation schemes (see [5,38]) or by sampling methods (see {9,10,191}. Thus, it is assumed here
that the random vectors are discretly distributed with a finite number of scenarios @ and

corresponding probabilities p( @). We shall assume that problem (2.1) is solvable,

Problem (2.1) can be formulated in the following equivalent form [35]:

min z=ax1 +Q(x1)
s.t. (2.2)

Ax1 =by, x1 20,
where  Q(x;) =min { 2, IJ,=1 p2 @)ca( w)xz( @)l

A @)z @) =he( @)-Bi( w)x1 x2( @) =0}

Properties of problem form (2.2) have been extensively studied in [35,36,37]. They show that
Q(x1) is convex and piecewise linear. Since Q(x1) is convex, it is possible to apply an outer
linearization procedure. For fixed x;, problem (22) is separable into L independent second-stage

linear programming problems. These subproblems are of the form:

alzx, w)= min e @)z w)
st. (2.3)
A W)k @) =b2( @)-Bil w)xa
x2( @) 20.

To enable a later result we will assume that A»( w) has full row rank. In particular we assume

that the feasible region for the dual of problem (2.3) possesses extreme points (ie.. contains no
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lines). It can be shown that q{x;, @) is a convex piecewise linear function of x; [35.36]. Each
second-stage subproblem affects the first-stage decision vector, x1, in two ways. First, the first-stage
decision must be in an acceptable set for all subproblems because all subproblems should be feasible.

It is necessary for x; to be selected so that the equations Ax( @w)xa( @) =b:( @w)-Bi( w)x; are

solvable in nonnegative x»( w) for all scenarios @ €. When x is temporarily held fixed for
certain values, the feasibility of each subproblem (2.3) should be tested. Some subproblems may be
infeasible for some fixed x; values, which limits the set of acceptable first-stage solutions, Second,
the expected value of the second-stage subproblems may vary according to each selection of a

vector xi.

2.2. The L-shaped Algorithm

A TSLP problem can be solved by the so-called L-shaped algorithm which is directly related to
Benders’ decomposition approach. The L-shaped algorithm given here is actually a variant of the
original one [34] in the sense that a random recourse matrix is allowed, The L-shaped algorithm
forms a linear approximation to problem(2.2) using outer linearization of Q(x1). Two types of cuts
(ie., constraints) are sequentially added: (1) feasibility cuts based on enforcing x)€K(here K={x;€
R™ | (Axi=by, x:20)N(V w€ Q. Ixs( @) =0 such that As( @)xe( @) =ba( @)-Bi( @)x1)} and (2)
optimality cuts generated by based on objective value bounding properties of the outer linearization of
Q(x1).

Proceeding with the outer linearization procedure, we derive the following “full master problem”

min cix;+8
s.t. (24.2)
20 o-1 ool @) (be @)-Bi( @)x)™ (( @) <0, i=1, .. m, (24b)
(b2 @)-Bi( w)x1)" 0( w) <0, i=1, ... n{ W), (2.4.c)
A1X1=b1
x120.

Constraints (2.4.b) are “optimality cuts,” and constraints (24.c) are “feasibility cuts.” See [24] for
a detailed description to derive constraints (2.4.b) and (24.c) and dual prices, o w) or m{ w). To
derive an explicit set of optimality constraints, it is necessary to employ an approximation of Q(x;).

The approach is based on the work of Lasdon [23]. While Lasdon’s work is concerned with Benders’
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decomposition approach, this study is concerned with stochastic programming problems. We must deal
with the same number of subproblems as the number of scenarios in the second stage, while
Lasdon’s account of Benders' decomposition approach deals with only one subproblem.

Now, we provide details of the L-shaped algorithm and the termination criteria. Master problem
(24) is called a "“full master problem” since both constraint sets involve a full contingent of
constraints. The full set of constraints are not explicitly available and the number of all constraints is
usually greater than the number of variables [4]. It becomes necessary to employ a relaxation
strategy to address problem (24).

In the L-shaped algorithm, we first solve the first-stage original master problem, obtaining a primal

solution X (1) to:

min C1X1
s.t. (2.5)

Aixi=b, x120,

We modify the right-hand sides of L subproblems (2.3) with a primal solution X (1). then we
attempt to solve the subproblem in x2( @) for all «, obtaining dual prices, o1( @) or m( w). We
generate cut(s) (either optimality or feasibility) with dual prices and append them to a relaxed
master problem. Then we solve the augmented master problem, obtaining a “better” x lf k=1,

We terminate this procedure in a finite number of iterations. The reason of finite iterations is as
follows: Problem (2.4) has only a finite number of constraints. If the optimality test is not passed,
then one or more new constraints are added. Thus, in a finite number of iterations either the
optimality test is passed or a full set of constraints will be obtainted.

Details of the L-shaped algorithm are shown in the Nassi-Schneiderman chart, given in figure 1.
The algorithm terminates under two conditions, when either the initial master or the augmented

master problem is infeasible, or when the termination criterion is satisfied in a finite number of

iterations, The termination criterion requires the lower bound & If to be within € of the upper bound
) Iﬁ While the lower bound increases monotonically, the upper bound value is not strictly

monotonically decreasing. The lower bound & E is the optimal solution value when the relaxed

master problem is solved at iteration k, The upper bound value is the minimum of the following two

values, the currently computed sum of objective function value for the stage and all subproblems(ie.,

c1x b ® 5:1 po(w) z ¥ (w)) and the previous least upper bound value & k-1
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step 1: solve the original master problem
initialize data

while the terminatation criterion is not satisfied

step 2: for all subproblems

setup subproblem

solve subproblem

step 3: setup the augmented master problem
solve the augmented master problem

{a) main procedure

solve the original master problem (2.4)

st m =n =k =0, and lower bound ( 8 §) = -oo
upper bound ( 8 ¥) = oo

let the optimal solution be x ]f

(b) step 1: procedure

set k = k+1

modify right hand side with x ¥7!

solve subproblem (2.3)

let z( @) be the optimal value of @ subproblem for @ = 1, -, L
store dual price

{c) step 2: procedure

If all subproblems are feasible

then else
generate optimality cut (2.4.b) generate feasibility cut(s)
set m = m+1, (24.c)
update upper bound, set n = n+1
min{ 4§, c;x ¥+ 2 L py(w) z 5 (w))

append corresponding cut(s) to the master problem
solve the augmented master problem (2.4)

If the master problem is feasible

then else

let the optimal solution be (x f, 6%) terminate

update lower bound, @ ¥ = cx 1+ 6%

{(d) step 3: procedure
Figure 1. Procedural Logic of the L-shaped Algorithm
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2.3. Computational Example.

A numerical example is used here to elaborate various algorithms’ solution procedures and to focus on
specific features inherent in the L-shaped and the analytic center algorithm. The example is a slight
modification of an example given in Birge and Louveaux [4]. The numerical example is as follows.:

min cx+Q(x)

st. (2.6)
0<x<10

where Q(x) =E¢ q(x, w),

alx, w)={& -x, if x<é 6 x-¢,if x=¢ }, where

¢ can take on the values 1, 2, and 8 each with probability '/,

and c is a null vector.

This problem has functions q(x, 1), q(x. 2), and q(x, 3) (ie,!x-11,1%x2], and |x-8]
respectively) each of which is convex. Recall that the L-shaped algorithm generates a single cut
from three functions, and then computes the current optimal solution and lower bound from a
relaxed master problem. The current optimal solution is passed to the subproblems to generate a cut.
This procedure is repeated until the algorithm converges. The L-shaped algorithm outerlinearizes

Q(x) by identifying a single hyperplane at each iteration.

Iteration 1: Assume the starting point X 0 = 0 and lower bound @ %= -0,

We have the upper bound & "U= 11/3 and a new cut from the functions (q{(x, 1), q(x.
2), and (q, 3)). The augmented master problem is

min 6

s.t. 0< x £ 10, (2.7
Solving problem (2.7) produces the lower bound & !=-(19/3) and x =10, which is not
optimal.

Iteration 2: We have the upper bound & %=min {11/3. 19/3} = 11/3 and a new cut from the

functions. Appending the cut § = x - 11/3 to master problem (2.7) and solving it

produces the lower bound @ 2=0 and x ~=11/3. which is not optimal,

Iteration 3: We have the upper bound & %=min {11/3, 26/9} = 26/9 and a new cut from the

functions. Appending the cut > (1/3)x + 5/3 to master problem and solving it produces
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the lower bound & i=0 and X 3=1.5. which is not optimal,

Iteration 4: We have the upper bound & ‘11;=min {26/9, 25} = 25 and a new cut from the
functions, Appending the cut = 3 - (1/3)x to master problem and solving it produces

the lower bound & i=7/3 and X 4=2, which is not optimal.
Iteration 5: We have the upper bound @ %=min {25, 7/3} = 7/3 from the functions. It is

optimal because @ ‘i= g %

We observe that the master program is unstable as new cuts are appended. When a new cut is

appended at iteration 1, the current optimal solution changes rapidly from the previous optimal

solution. That is, from x 0 0to x'= 10. As iterations proceed, the optimal solution is computed
subject to ever more appended cuts and the instability of solutions diminishes. But the initial
instability has been observed as a reason for slow convergence [30]. As expected, the lower bound is
monotonically increasing, the current least upper bound is selected as the lesser of the previous least

upper bound and the currently computed upper bound.

3. Analytic Center Algorithm

The L-shaped algorithm, which is a cutting plane algorithm, is based on the selection of a primal
vector x that is sent to subproblems in order to modify their corresponding right-hand sides. A
purely linear master problem like problem (2.4) selects a primal vector from the extreme points of
the so-called “localization set” where the objective function value is minimized. The localization set is
constructed from a relaxed master problem and a given upper bound on the overall problem (2.1).
As previously noted, cutting plane algorithms have exhibited slow convergence,

The analytic center of a polyhedral set, as proposed initially in [14,15,32]. is used to avoid the
instabilities experienced by classic cutting plane methods, An analytic center is a center point of the
localization set. These early studies have shown that convergence rates may be accelerated if cutting
planes are generated from analytic centers of the encountered localization sets instead of generating
them from extreme points. This analytic center concept was further elaborated by Goffin and
colleagues [16,17] in proposing a new treatment of the master problem in the classical Dantzig-Wolfe
approach. A method is to associate a projective algorithm [39] with a cutting plane algorithm. The
projective algorithm is used to get a center point in the localization set. However, early studies

[14,15,16] were theoretical in nature and did not report any numerical experimentation. Numerical
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experimentation in [1] was reported on a set of convex constrained geometric programming problems,
provided by Kortanek and No [22], showing a good convergence rate. The study in [17] reports
computational results showing that the analytic center method may perform better than the classical
DW approach, although experimentations are based on small convex nondifferentiable test problems.
We are aware of no published work relating the analytic center concept to solving stochastic
programming problems. Hence, one objective of this study is to tailor the analytic center concept to
solving stochastic LP problems and to report on initial computational experiments,

The master problem of an analytic center algorithm selects a primal vector which is the analytic
center of the localization set. The localization set is constructed from a relaxed master problem and a
given upper bound. A general way to obtain an analytic center is based on the work given by

Goffin et al. [16], but it is modified here to apply to TSLP problems.

3.1. Analytic Center of the Localization Set

The Master problem of algorithm is the same as the master problem (24) of the L-shaped

algorithm, A tractable approximation of the master problem must consider only subsets of the full set

of constraints, Let 1 and j be subsets of optimality constraints and feasibility constraints,

respectively., Then we have a relaxed master problem

min cixp + 9 (3.1.a)
st

Tupol @) (b @)-Bil @)x)T 2 @) < 81, i€ 1 (3.1b)
(ba( @)-Bi( @)x))” o;(w) 0. i€ ] (31c)
Aix1 2 by, (3.1.d)
x1 = 0. (3.1,8)

Here, c1 is a vector in R™", by is a vector in R™Y, A, is a matrix of real numbers and size mq)
x n¢y. Constraints (3.1.d) are actually intended to represent both equality and inequality constraints.
We consider an inequlity constraints separately in (3.1.d) for special treatment in the analytic center
problem. Any equality constraints are considered explicitly to be presented potential function, The
true inequality constraints may accommodate upper and lower bounds in each decision variable in Xi.

The localization set from the relaxed master problem (3.1) and a given upper bound &y on the

overall problem (2.1) is defined to be:
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F( 6u)={( X],H) » C X1+(9S 0U,
012 224 p2(@)( by(w)— B (@) x)" 7,(0),icT (32)

Al X2 bl, x1 20, X1 € Rn<1)}

where 1 is the vector of ones,

This polyhedron has dimension R"*! and contains the optimal solution of the current master
problem. Two assumptions assure the existence of the analytic center of (3.2). The first assumption
is that the subset I is not empty. This assumption with a given upper bound and constraints (3.1.d)
and (3.1.e) implies that the localization set is bounded. The other assumption is that the interior of

the polyhedron is not empty.
Now, let us consider a way to obtain an analytic center of the localization set (3.2). The analytic

center is based on the maximization of a so-called potential function, To simply express the potential

function, let us introduce the follwing slack variables:

SO = QU_CIXI—Q

Si = 6= X, p2(e)by(0)— Bi(0) x,)T 7,(a).ic] -
3.3

Sj = ~(b2(cu)—Bl(cu)X1)TO'j(.’(l)),je—j
Sg = Alg X ig"bl gEQ.

G is a subset(ie, inequality constraints) of the first stage constraints, Then we have the

following potential function:

¢ (0y=Insy+ =, 4Ins,+ Yiaghsi+ Z,.cln s, (34)

st. any ture equality constraints in (3.1.d).

This function is well defined on the interior of the localization set, since all the slacks are then
strictly positive and the logarithms are defined. The potential function is strongly concave on this
domain [17] and it tends to -oo towards the boundary. Thus it achieves a global maximum on its
domain and its maximizer is unique due to a strong concavity property. The anaytic center of the

localization set is defined to be precisely this maximizer, Using (3.3), we eliminate the slack variables

in the definitions of ¢ ( byu).
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Maximizing of the potential function, ¢ ( @y), we obtain the analytic center value ( X, 8.).

However, if the value & is not optimal in the current master problem, we can recover an optimal

value 6, denoted &,. The value @, represents a minimum value of the relaxed master

problem (3.1) associated with the corresponding vector X 1. The value @, is recovered as:

6= max ..; 2, P2(@)(by(w)— B(w) x)7 7;(w). (35)

At iteration k, @ %(the upper bound on the overall problem), 8 Ic( and @4 z may be different,

The value @ fn must be less than or equal to the value & ‘c( at iteration k.
3.2. Convergence of Analytic Center Algorithm

The procedural logic of analytic center algorithm is depicted in figure 2.

step 1: initialize data

while the termination criterion is not satisfied

step 2: for all subproblems.

setup subproblem

solve subproblem

setp 3: generate corresponding cut(s)

construct augmented master problem

maximize the potential function

(a) main procedure

compute the center of an initial feasible set

setm =n=0,¢,k =0, 05=°°,and 9}If='°°

let the optimal solution be x ¥

(b) step 1: procedure
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set k = k + 1 and modify right-hand side with X If—l
solve subproblem (2.3)

let z*(w) be the optimal value of @ subproblem

store dual price

(c) setp 2: procedure

If any of subproblems is infeasible

then else
generate feasibility generate optimality cut (3.1.b)
cut(s) (3.1.c) update upper bound @ 1f1=

setn = n +1
min { 8§}, cix T+ 3 t_1 pl @2 @)}

If the cut is not the same as previous ones
then else
setm =m+1

append cuts to

master problem

append cut

construct the augmented master problem (3.1)

construct the localization set (3.2) and compute the analytic center of (3.2)
If the potential function is feasible
then else

let the analytic
center be ( X, .)

update lower bound

max { 8 ]ﬁ_l, from
(3.10)}

(d) step 3: procedure
Figure 2. Procedural Logic of the Analytic Center Algorithm

A biref description of algorithm will be given below. In the beginning, it is necessary to comptute
the analytic center of the initial feasible set: {x;: Aixizby, x1208. The step 2 procedure is to pass
down a primal solution x; to subproblems, to modify their right-hand side value, and to solve them.
The step 3 procedure has three cases. The first case occurs when any subproblem is infeasible, Then
generate corresponding feasibility cuts, append them to the relaxed master problem. and solve its
corresponding potential function. The second case occurs when all subproblems are feasible and the
vector of dual prices for the subproblems, produced in the current iteration, is not the same as the

previous vector. By aggregating dual prices from all subproblems, we produce one single optimality
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cut. Then append it to the relaxed master problem, and solve the corresponding potential function.

The third case occurs when either one of the two conditions in the second case is not satisfied. Then
only update @ y(the upper bound on the overall problem). and carry out the maximization of the
corresponding potential function.

Algorithm terminates when @ » + &> 6 Y. While we obtain the value of @y form the solution

of the subproblems, we obtain the value of #p from the computation of the analytic center, as will

now be described. While linear cutting palne algorithms such as the L-shaped algorithm obtain the
lower bound value directly from the computation of the relaxed master problem, we obtain the lower
bound value from the analytic center.

Before getting the lower bound, we will use simplified notation to aid the exposition. Consider the

following simplified relaxed master problem instead of using (3.2) and its dual.

min {c"x: ATx-s=b, s=0} where A€ R™", (3.6)
max bTu: Au=c, u=0}. (3.7

With the same assumptions and procedures previously mentioned, we can derive the localization set:
—f:‘z fy)=ix: c’x< By . A"x=bl. (3.8)

We define the exact analytic center as the point in the localization set which maximizes the

following potential function:

max ImSo+ X i=; InSi
s.t. (39)

Se= Bu-c'x, So) 0
Si=ATx-b, S0

Now, We can get the lower bound using the notation in (3.6)-(3.9), due to the theorem in [16].
Let X be the analytic center of the localization set F( 8y)={x: cTx< 6y, ATx=>b}.

Then, (3.1) is a lower bound on the optimal value of problem (3.6).

f.=(n+1cTx—nby (3.10)
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Now consider the convergence of algorithm, If the termination test is not passed, one or more
constraints are added to a relaxed master program. In a finite number of iterations, exactly one of
three possible conditions ensues: (1) the optimalitv test is passed: or (2) the optimality test is not
passed and cuts are still produced: or (3) the oplimality test is not passed and no more cuts are
produced. When the optimality test is not passed after a finite number of iterations, algorithm does
not produce condition (2) any more [24].

Thus, the algorithm must be in condition (3) aiter a finite number of iterations. Then algorithm
terminates because of the following property: The volume of the localization set is shrinking as

iterations proceed. With a small enough volume of the localization set, algorithm terminates because

QUS HL —E&.

3.3. Computational Example

Here, we consider the same numerical example as used previously.

Iteration 1: Compute the center point x;=(0+10)/2 from the box constraint, set € =0.005,
@uy=o0, and @ =—00. We have the upper bound & U=10/3 and a new cut from

the functions.
(Master) Append the cut & >(1/3)x+5/3 to the current master problem and update the

upper bound. Construct the localization set
F(0u)={(x,0:6<6L,06>(1/3)x +5/3,0<x<10}.
To obtain the analytic center, maximize the corresponding potential function
4 ( 0y)=In(10/3- §)+In( §-(1/3)x-5/3) +n(10-x) +In x
to produce ( x ', 6 {)=(1454, 2.744). Undate 6 ! =0.976 and procesd.
Iteration 2: We have the upper bound & %J= (7.536/3) and a new cut from the functions, Append

the cut §=-(1/3)x+3 and update the upper bound.

Maximize the corresponding potential function

6 ( 8 1) =1n(7536/3- 6)+In( 6-(1/3)x-5/3) +In( 0+(1/3)x-3)+In(10-x)+In x to produce
(x?,62)=(2024, 2453). Update @ 2=2217 and proceed.

Iteration 3: We have the upper bound & %=(7.024/3) which produces no new cut from the

functions. Update only the upper bound on the overall problem.
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Maximize the corresponding potential function

X 8 ) =1n(7.024/3- @) +In( G-(1/3)x-5/3) +In( 6+(1/3)x-3) +In(10-x)
to produce ( x 3, g §)=(2.0, 2.339). Update @ %=2.330 and proceed.
Iteration 4: We have the upper bound @ %'—‘7/3 from the functions, The value X 3 s optimal

because @ %= %) %. The value @ fn is 7/3. The algorithm terminates.

We observe that the algorithm terminates at iteration four. The first two iterations generate
optimality cuts and update the upper bound, while the remaining iterations only update the upper
bound and shrink the volume of the localization sct. We get the first analytic center from the
localization set that is the bounded set from the first cut, the box constraint (102x=0), and upper
bound 1. At iteration two, we have a reduced localization set that is the bounded set from the first
cut, the second cut, and upper bound 2. At iteration 3, the localization set is reduced again because

of the updated least upper bound 3, although there is no new optimality cut.

4. Variations to the L-shaped and the Analytic Center
Algorithm

A further objective of this study is to incorporate an idea of [13] into both the L-shaped
algorithm and the analytic center algorithm. Their idea is not to optimize the current master problem
but to find any feasible point to the master problem that provides an improved bound on the overall
objective value,

We, first, develop a variation of the L-shaped algorithm through incorporation of an idea of
Geoffrion and Graves. The main difference between the L-shaped algorithm and the variation to be
presented is in formulating the current master problem and the termination criterion. While the
L-shaped algorithm seeks to optimize the current master problem, the variation seeks to find only a
feasible solution of the current master problem with an improved upper bound. Section 4.1 contains
the derivation of the master problem and defines the variation algorithm derived form the L-shaped
algorithm,

The analytic center method uses a nonlinear masterm problem to get analytic center. When a
center point is passed down to the subproblems, it is not necessarily a good point to produce a deep

cut. As we observed in the computational example in section 2.3, an extreme point is not necessarily
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a good point, either. Some point in the localization set may be a better point for generating a cut.
As it takes time to compute an exact analytic center of the localization set, the prospect emerges
that a suboptimization of the potential function may accelerate empirical convergence of the analytic

center algorithm.
4.1. The Variation to the L-shaped Algorithm

The differences between the L-shaped and the variation are as follows, While the L-shaped
algorithm optimizes the current master problem to find an optimal solution, the variation seeks a feasible
solution of the current master problem having a value less than UB- €. Therefore, the current master

problem cannot produce a lower bound any more, We have the following full master problem

min 2 (x, 6) (4.1.a)
s.t.

C1 X, +0< 8y—¢ (4.1.b)
012% 5-1p5(0) (b (&)~ Bi(w)x)x@), i=1,, m, (410)
0=(b; (@) =B (0)x,) 0y (w),i=1,...,n(w), (4.1.d)
A, x=2b,, (4.1e)
x 1 =0. (4.11)

From master problem (2.4), the objective function value of the master problem is bounded by UB-
€, shown in constraint (4.1.b) here. Eliminating the variable 6, we have the following equivalent

master problem

min 2 (x;) (4.2.a)
s.t.

€1 x1+ 3 o1 pa(0)by(@x,)— By (o) x))T 7,(0)< 6y—e,i=1,.m, (4.2.b)
02(by(@)=Bi(a) x )" 0;(a), j=1,,0(a), (4.2.)
Aixi 2 b, (4.2d)
x 2 0. (4.2.)

There is a question about choosing an appropriate objective function, % (x;) as the problem
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becomes feasibility seeking only. We can use any convenient objective function in x to produce a
feasible solution. The x function on the left-hand side of the latest optimality cut (4.2b) is

suggested for use in [13]. Then the objective function of the master problem is

min c; x;+ 3 5o p2(@) by(w)— B (@) x)T 77(w) (4.3)

where ; denotes the latest optimality cut.

As a lower bound is not produced from the master problem, it is necessary to modify the
L-shaped algorithm. Instead of solving master problem (24), we solve master problem (4.2). The
variation algorithm terminates when the master problem (4.2) has no feasible solution, meaning there
is no solution to the original problem better than the incumbent by at least € in objective value. In
particular, the current best solution is € -optimal, ie., having an objective value within € of the

optimal value.
4.2. Relaxation Strategy for the Analytic Center Algorithm

The main idea of this implementation is to find an approximate center point, rather than spending
the computation time to find an exact analytic center. As perviously pointed out, an approximate
center point of the localization set may well produce a deeper cut than the exact analytic center.
Instead of optimizing the potential function (3.4) with a tight stopping rule tolerance, we find an
approximate center point from the localization set by relaxing the optimality tolerance level Then
when the optential function optimization process terminates, an approximate center point is obtained.

The issue of how much we can relax the optimality tolerance level does not seem to have been
considered in the literature. The computational experiments reported below are intended to provide

some empirical guidance.

5. Computational Experiments

5.1. Specification of the Test Problems

The algorithms were run on a set of seven TSLP problems. Table 1 shows the characteristics of

the test problems,
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Table 1. Characteristics of the Test Problems

problem # of Size of Equivalent Objective
Name scenarios subproblems LP Value
PR1 1-2 2X2, 5X6 12x14 789.8
LP1 1-3 5%5, 11x3 38x12 37231633
SC205 1-8 12x14, 22x22 189x190 -60.4
SCRS8 1-8 28x 37, 2838 252x 341 1234
SCAGR7 1-8 15%20, 38 x40 319x340 -832903.5
SCTAP1 1-8 30x 48, 60x96 510x 816 360.5'
PR2 1-8 11x10, 99x90 803 x730 8275.456

1. This value, computed using GAMS, is different form that reported in [3,12].

Test problems SC205, SCRSS, SCAGR7, and SCTAPI, supplied by John Birge, are stochastic
versions of problems from Ho and Loute (18], They are deterministic multistage problems with
staircase structure. These test problems are medium-sized problems, each based on a practical
application (see the details [3, 18]). But they have become standardized problems since they were
used in [3, 12]. Test problem LP1, taken form [7], is a small-sized two-period problem with
block-angular structure. Test problems PRI and PR2, used in [24], were formulated as investment
problems with additional policy constraints and were small and medium-sized problems, respectively.

All of the full deterministic equivalent problems were solved using GAMS version 2.25x(General
Algebraic Modeling System), to provide a check on the solution value and the optimal solutions. We
implemented the various algorithms in F ORTRAN 77 on a DEC station 5000 under the Ultrix
operating system in order to test effectiveness for solving test problems. All algorithms were written
by us using MINOS 5.3 to solve the various linear and nonlinear programming problems encountered.
Since MINOS requires the reading of SPECS files and MPS files as input, some customizing was
necessitated in using the MINOS code(see [24]).

5.2. Computational Results

With the above implementation, CPU times and the number of the master problems to be solved
were used as measures of performance. In addition io the number of the master problems, we report
here the number of feasibility cuts and optimality cuts to provide a general idea of the behavior of
the algorithms as they were applied to the test problems. Efficiency measures such as using the last

optimal basis to begin further (dual) simplex iterations upon inclusion of new constraints in the
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L-shaped algorithm, or using the previous Hessian matrix when adding a term to the potential
function in the analytic center method were not used. Hence numbers of the master problems solved
and numbers of generated cuts are perhaps more meaningful measures of relative performance. All
times reported here include the generation of input files (MPS files) and the solution of the master
problems and subproblems.

Table 2 shows the computational results for each test problem. The performance of the analytic
center algorithm was presented for three optimality tolerance levels: the value 1E-6 is a default
value: the next column shows the best performing tolerance value: and the value in the last colunm
results in the algorithm not converging. The last case happens when the optimality tolerance is set
too loosely.

Based on these results, we make several observations, First, when the L-shaped algorithm is
applied, most test problems are solved within a few iterations (at most 6 iterations for problem
SCAGR7). Thus, it is quite difficult for the other proposed algorithms to materially reduce the
number of the master problems to be solved. A strategy to eliminate inactive constraints, proposed
for the analytic center algorithm in [17], might be inefficient to implement here since most test
problems produce only a few cuts. Analytic and the variation to the L-shaped algorithm perform
better than the L-shaped algorithm in test problems PR1 and PR2. The test problems are solved
within two iterations. These two algorithms generate a feasible solution to the subproblem when they
solve the initial master problem on first iteration. Thus, they eliminate the step of feasibility cut
generation, while the L-shaped algorithm require that step.

Second, when the analytic center algorithm is applied to test problems, LP1, SCAGR7, and
SCTAP1, the numbers of master problems to be solved increase considerably compared to the
L-shaped and the variation to the L-shaped. For example, the numbers increased from 3 to 6 on
problem LP1, form 6 to 13 on problem SCAGR7, and from 2 to 6 on problem SCTAPL. None of
these test problems produces any new cuts after the first few iterations. They only update their
upper bounds, as shown in example 3.3. It takes a few more iterations to compute the optimal
solutions with only the upper bounds updated. In these instances, when we introduce a new
implementation, the number of master problems to be solved can be considerably reduced. A hybrid
implementation suggests itself: when no new cuts are produced by the analytic center algorithm, the
L-shaped algorithm or the variation to the L-shaped is then applied to the current master problem.
With this new implementation, the numbers of master problems to be solved decreased form 5 to 4
on problem LPL, from 13 to 9 on problem SCAGRY, and from 6 to 4 on problem SCTAPL. Thus,
this implementatioin can be considerably more effective when no new cuts are produced by the
analytic center algorithm.

Third, the other performance criterion. CPU time. portrays a complementary comparison of the
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algorithms. The variation to the L-shaped algorithms performs best among all algorithms with
respect to CPU time, except in the case of the analytic algorithm with optimality tolerance value, 0.1
and 001, on test problems, SCRS8 and PR?2 respectively. The variation to the L-shaped algorithm
reduces CPU time 2% to 53% compared to the L-shaped algorithm.

Table 2. Computational Results

PR1 L-shape variation ACA(1E-6) ACA(IE-1) ACA(1E-0)
# master 3(1/1)! 2(0/1) 2(0/1) 2(0/1) *
time(sec) 0.55 0.36 0.48 0.42 *
LP1 L-shape variation ACA(IE-6) ACA(E-5) ACA(1E-4)
# master 3(1/1) 3(1/1) 5(1/1) 5(1/1) *
time(sec) 0.87 0.85 1.87 1.79 *
SC205 L-shape variation ACA(1E-6) ACA(IE-1) ACA(IE-0)
# master 4(3/0) 4(3/0) 5(3/1) 5(3/1) *
time(sec) 545 543 7.54 7.35 *
SCRS8 L.-shape variation ACA(1E-6) ACA(IE-D) ACA(1E-0)
# master 2(0/1) 2(0/1) 2(0/1) 2(0/1) *
time(sec) 4.28 4.03 408 3.95 *
SCAGR7 L-shape variation ACA(1E-6) ACA(IE-3) ACA(1E-2)
# master 6(3/2) 6(3/2) 13(5/2) 13(5/2) *
time(sec) 17.74 17.33 46.67 41.32 *
SCTAP1 L-shape variation ACA(IE-6) ACA(1E-3) ACA(1E-0)
# master 2(0/1) 2(0/1) 6(0/2) 6(0/2) *
time(sec) 10.26 10.20 51.93 47 84 *
PR2 L-shape variation ACA(LE-6) ACA(1E-2) ACA(IE-1)
#master 3(1/1) 2(0/1) 2(0/1) 2(0/1) *
time(sec) 22.83 1547 16.49 15,40 *

1. The first and second numbers in parenthesis represents the number of fe

2. * indicates no convergence

asibility and optimality cuts, respectively.

Finally, the implementation of relaxing optimality tolerance values to the analytic center algorithm
seems to be a promising strategy for the analytic center algorithm. The analytic algorithm with a
relaxed parameter reduces CPU time 2% to 12% compared to the analytic algorithm with default
value 1E-6(PR1 13%. LP1 2%, SC205 3%. SCRSS8 3%, SCAGR 12%, SCTAP 8%, PR2 7%).
Unfortunately, it appears to be difficult to determine, a priori, the best optimality tolerance value for
all test problems since this will be problem specific. Up to some optimality tolerance level, we have
observed reduced CPU times, However, the algorithm does not converge when the optimality

tolerance is set too loosely.
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6. Conclusions

In this paper, we have proposed new solution methods to solve TSLP problems. One solution
method is to combine the analytic center concept with Benders' decomposition strategy to solve two-
stage stochastic LP problems. The analytic center concept was proposed to solve convex
nondifferentiable problems. This approach was tested on convex nondifferentiable problems and
produced quite promising results for those problems. From the computational results for our test
problems, the performance of the analytic center algorithm was not always good. The reasons for
this one may be explained by two things. First, since the L-shaped algorithm performs well, it is
quite hard for the analytic center algorithm to improve the number of the master problems to be
solved for a small or medium-sized problems. Second, since convex nondifferentiable test problems
originally applied by Bahn et al. have large volumes in the localization set (see the details of test
problems [1,22]). they were performed very well with the analytic center concept. But, since our
test problems have relatively small volumes in the localization set(i.e., most of our test problems have
lots of equality constraints), the opportunities to generate a deep cut may be limited.

The other method is to apply an idea applied by Geoffrion and Graves to modify the L-shaped
algorithm and the analytic center algorithm. The variation algorithm seeks to find a feasible solution
of the current master problem’s constraint set rather than to find the optimal solution since the
current master problem has too little information about the full problem in early iterations. In the
analytic center algorithm, we seek to find an approximate center point of the localization set rather
than to find an exact center point. From the computational results, the idea to modify the L-shaped
algorithm and the analytic center algorithm was found to be quite promising. The variation to the
L-shaped algorithm performs better than or at least equal to the other algorithms with respect to
the number of the master problems to be solved and the CPU times. The relxation strategy applied
to the analytic center algorithm improved the CPU times compared to the analytic center algorithm,
while it does not improve the number of master problems to be solved.

A further idea is to combine the analytic center algorithm with the L-shaped or the variation to
the L-shaped algorithm. Since the analytic center algorithm can considerably reduce the number of
master problems to be solved compared to the other algorithms, we can introduce a hybrid
implementation. That is, when no new cuts are generated by the analytic center algorithm, the
L-shaped or the variation to the L-shaped is then applied to the current master problem.

Since the computational experiments have been done on small-sized to medium-sized test problems
and on test problem that have mostly equality constraints, our ability to extrapolate our conclusion is

limited. If the various algorithms are tested on large-sized or other test problems, it is not guaranteed



2 Sang Jin Lee BERER SR

that we would get the same computational results as those of this study. Thus, a clear future

research objective will be to perform computational experiments on other large-sized test problems.
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