• Title/Summary/Keyword: Analysis algorithm

Search Result 12,308, Processing Time 0.738 seconds

Evaluation of Image Noise and Radiation Dose Analysis In Brain CT Using ASIR(Adaptive Statistical Iterative Reconstruction) (ASIR를 이용한 두부 CT의 영상 잡음 평가 및 피폭선량 분석)

  • Jang, Hyon-Chol;Kim, Kyeong-Keun;Cho, Jae-Hwan;Seo, Jeong-Min;Lee, Haeng-Ki
    • Journal of the Korean Society of Radiology
    • /
    • v.6 no.5
    • /
    • pp.357-363
    • /
    • 2012
  • The purpose of this study on head computed tomography scan corporate reorganization adaptive iteration algorithm using the statistical noise, and quality assessment, reduction of dose was evaluated. Head CT examinations do not apply ASIR group [A group], ASIR 50 applies a group [B group] were divided into examinations. B group of each 46.9 %, 48.2 %, 43.2 %, and 47.9 % the measured in the phantom research result of measurement of CT noise average were reduced more than A group in the central part (A) and peripheral unit (B, C, D). CT number was measured with the quantitive analytical method in the display-image quality evaluation and about noise was analyze. There was A group and difference which the image noise notes statistically between B. And A group was high so that the image noise could note than B group (31.87 HUs, 31.78 HUs, 26.6 HUs, 30.42 HU P<0.05). The score of the observer 1 of A group evaluated 73.17 on 74.2 at the result 80 half tone dot of evaluating by the qualitative evaluation method of the image by the bean curd clinical image evaluation table. And the score of the observer 1 of B group evaluated 71.77 on 72.47. There was no difference (P>0.05) noted statistically. And the inappropriate image was shown to the diagnosis. As to the exposure dose, by examination by applying ASIR 50 % there was no decline in quality of the image, 47.6 % could reduce the radiation dose. In conclusion, if ASIR is applied to the clinical part, it is considered with the dose written much more that examination is possible. And when examination, it is considered that it becomes the positive factor when the examiner determines.

Development of Gated Myocardial SPECT Analysis Software and Evaluation of Left Ventricular Contraction Function (게이트 심근 SPECT 분석 소프트웨어의 개발과 좌심실 수축 기능 평가)

  • Lee, Byeong-Il;Lee, Dong-Soo;Lee, Jae-Sung;Chung, June-Key;Lee, Myung-Chul;Choi, Heung-Kook
    • The Korean Journal of Nuclear Medicine
    • /
    • v.37 no.2
    • /
    • pp.73-82
    • /
    • 2003
  • Objectives: A new software (Cardiac SPECT Analyzer: CSA) was developed for quantification of volumes and election fraction on gated myocardial SPECT. Volumes and ejection fraction by CSA were validated by comparing with those quantified by Quantitative Gated SPECT (QGS) software. Materials and Methods: Gated myocardial SPECT was peformed in 40 patients with ejection fraction from 15% to 85%. In 26 patients, gated myocardial SPECT was acquired again with the patients in situ. A cylinder model was used to eliminate noise semi-automatically and profile data was extracted using Gaussian fitting after smoothing. The boundary points of endo- and epicardium were found using an iterative learning algorithm. Enddiastolic (EDV) and endsystolic volumes (ESV) and election fraction (EF) were calculated. These values were compared with those calculated by QGS and the same gated SPECT data was repeatedly quantified by CSA and variation of the values on sequential measurements of the same patients on the repeated acquisition. Results: From the 40 patient data, EF, EDV and ESV by CSA were correlated with those by QGS with the correlation coefficients of 0.97, 0.92, 0.96. Two standard deviation (SD) of EF on Bland Altman plot was 10.1%. Repeated measurements of EF, EDV, and ESV by CSA were correlated with each other with the coefficients of 0.96, 0.99, and 0.99 for EF, EDV and ESV respectively. On repeated acquisition, reproducibility was also excellent with correlation coefficients of 0.89, 0.97, 0.98, and coefficient of variation of 8.2%, 5.4mL, 8.5mL and 2SD of 10.6%, 21.2mL, and 16.4mL on Bland Altman plot for EF, EDV and ESV. Conclusion: We developed the software of CSA for quantification of volumes and ejection fraction on gated myocardial SPECT. Volumes and ejection fraction quantified using this software was found valid for its correctness and precision.

Calculation of Surface Heat Flux in the Southeastern Yellow Sea Using Ocean Buoy Data (해양부이 자료를 이용한 황해 남동부 해역 표층 열속 산출)

  • Kim, Sun-Bok;Chang, Kyung-Il
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.19 no.3
    • /
    • pp.169-179
    • /
    • 2014
  • Monthly mean surface heat fluxes in the southeastern Yellow Sea are calculated using directly observed airsea variables from an ocean buoy station including short- and longwave radiations, and COARE 3.0 bulk flux algorithm. The calculated monthly mean heat fluxes are then compared with previous estimates of climatological monthly mean surface heat fluxes near the buoy location. Sea surface receives heat through net shortwave radiation ($Q_i$) and loses heat as net longwave radiation ($Q_b$), sensible heat flux ($Q_h$), and latent heat flux ($Q_e$). $Q_e$ is the largest contribution to the total heat loss of about 51 %, and $Q_b$ and $Q_h$ account for 34% and 15% of the total heat loss, respectively. Net heat flux ($Q_n$) shows maximum in May ($191.4W/m^2$) when $Q_i$ shows its annual maximum, and minimum in December ($-264.9W/m^2$) when the heat loss terms show their annual minimum values. Annual mean $Q_n$ is estimated to be $1.9W/m^2$, which is negligibly small considering instrument errors (maximum of ${\pm}19.7W/m^2$). In the previous estimates, summertime incoming radiations ($Q_i$) are underestimated by about $10{\sim}40W/m^2$, and wintertime heat losses due to $Q_e$ and $Q_h$ are overestimated by about $50W/m^2$ and $30{\sim}70W/m^2$, respectively. Consequently, as compared to $Q_n$ from the present study, the amount of net heat gain during the period of net oceanic heat gain between April and August is underestimated, while the ocean's net heat loss in winter is overestimated in other studies. The difference in $Q_n$ is as large as $70{\sim}130W/m^2$ in December and January. Analysis of long-term reanalysis product (MERRA) indicates that the difference in the monthly mean heat fluxes between the present and previous studies is not due to the temporal variability of fluxes but due to inaccurate data used for the calculation of the heat fluxes. This study suggests that caution should be exercised in using the climatological monthly mean surface heat fluxes documented previously for various research and numerical modeling purposes.

Operational Ship Monitoring Based on Multi-platforms (Satellite, UAV, HF Radar, AIS) (다중 플랫폼(위성, 무인기, AIS, HF 레이더)에 기반한 시나리오별 선박탐지 모니터링)

  • Kim, Sang-Wan;Kim, Donghan;Lee, Yoon-Kyung;Lee, Impyeong;Lee, Sangho;Kim, Junghoon;Kim, Keunyong;Ryu, Joo-Hyung
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.2_2
    • /
    • pp.379-399
    • /
    • 2020
  • The detection of illegal ship is one of the key factors in building a marine surveillance system. Effective marine surveillance requires the means for continuous monitoring over a wide area. In this study, the possibility of ship detection monitoring based on satellite SAR, HF radar, UAV and AIS integration was investigated. Considering the characteristics of time and spatial resolution for each platform, the ship monitoring scenario consisted of a regular surveillance system using HFR data and AIS data, and an event monitoring system using satellites and UAVs. The regular surveillance system still has limitations in detecting a small ship and accuracy due to the low spatial resolution of HF radar data. However, the event monitoring system using satellite SAR data effectively detects illegal ships using AIS data, and the ship speed and heading direction estimated from SAR images or ship tracking information using HF radar data can be used as the main information for the transition to UAV monitoring. For the validation of monitoring scenario, a comprehensive field experiment was conducted from June 25 to June 26, 2019, at the west side of Hongwon Port in Seocheon. KOMPSAT-5 SAR images, UAV data, HF radar data and AIS data were successfully collected and analyzed by applying each developed algorithm. The developed system will be the basis for the regular and event ship monitoring scenarios as well as the visualization of data and analysis results collected from multiple platforms.

Reproducibility of Regional Pulse Wave Velocity in Healthy Subjects

  • Im Jae-Joong;Lee, Nak-Bum;Rhee Moo-Yong;Na Sang-Hun;Kim, Young-Kwon;Lee, Myoung-Mook;Cockcroft John R.
    • International Journal of Vascular Biomedical Engineering
    • /
    • v.4 no.2
    • /
    • pp.19-24
    • /
    • 2006
  • Background: Pulse wave velocity (PWV), which is inversely related to the distensibility of an arterial wall, offers a simple and potentially useful approach for an evaluation of cardiovascular diseases. In spite of the clinical importance and widespread use of PWV, there exist no standard either for pulse sensors or for system requirements for accurate pulse wave measurement. Objective of this study was to assess the reproducibility of PWV values using a newly developed PWV measurement system in healthy subjects prior to a large-scale clinical study. Methods: System used for the study was the PP-1000 (Hanbyul Meditech Co., Korea), which provides regional PWV values based on the measurements of electrocardiography (ECG), phonocardiography (PCG), and pulse waves from four different sites of arteries (carotid, femoral, radial, and dorsalis pedis) simultaneously. Seventeen healthy male subjects with a mean age of 33 years (ranges 22 to 52 years) without any cardiovascular disease were participated for the experiment. Two observers (observer A and B) performed two consecutive measurements from the same subject in a random order. For an evaluation of system reproducibility, two analyses (within-observer and between-observer) were performed, and expressed in terms of mean difference ${\pm}2SD$, as described by Bland and Altman plots. Results: Mean and SD of PWVs for aorta, arm, and leg were $7.07{\pm}1.48m/sec,\;8.43{\pm}1.14m/sec,\;and\;8.09{\pm}0.98m/sec$ measured from observer A and $6.76{\pm}1.00m/sec,\;7.97{\pm}0.80m/sec,\;and\;\7.97{\pm}0.72m/sec$ from observer B, respectively. Between-observer differences ($mean{\pm}2SD$) for aorta, arm, and leg were $0.14{\pm\}0.62m/sec,\;0.18{\pm\}0.84m/sec,\;and\;0.07{\pm}0.86m/sec$, and the correlation coefficients were high especially 0.93 for aortic PWV. Within-observer differences ($mean{\pm}2SD$) for aorta, arm, and leg were $0.01{\pm}0.26m/sec,\;0.02{\pm}0.26m/sec,\;and\;0.08{\pm}0.32m/sec$ from observer A and $0.01{\pm}0.24m/sec,\;0.04{\pm}0.28m/sec,\;and\;0.01{\pm}0.20m/sec$ from observer B, respectively. All the measurements showed significantly high correlation coefficients ranges from 0.94 to 0.99. Conclusion: PWV measurement system used for the study offers comfortable and simple operation and provides accurate analysis results with high reproducibility. Since the reproducibility of the measurement is critical for the diagnosis in clinical use, it is necessary to provide an accurate algorithm for the detection of additional features such as flow wave, reflection wave, and dicrotic notch from a pulse waveform. This study will be extended for the comparison of PWV values from patients with various vascular risks for clinical application. Data acquired from the study could be used for the determination of the appropriate sample size for further studies relating various types of arteriosclerosis-related vascular disease.

  • PDF

Reproducibility of Gated Myocardial Perfusion SPECT for the Assessment of Myocardial Function: Comparison with Thallium-201 and Technetium-99m-MIBI (심근 기능 측정에 사용된 게이트 심근 관류 SPECT 방법의 재현성 평가: $^{201}Tl$$^{99m}Tc$-MIBI 게이트 SPECT의 비교)

  • Hyun, In-Young;Seo, Jeong-Kee;Hong, Eui-Soo;Kim, Dae-Hyuk;Kim, Sung-Eun;Kwan, Jun;Park, Keum-Soo;Choe, Won-Sick;Lee, Woo-Hyung
    • The Korean Journal of Nuclear Medicine
    • /
    • v.34 no.5
    • /
    • pp.381-392
    • /
    • 2000
  • Purpose: We compared the reproducibility of $^{201}Tl\;and\;^{99m}Tc$-sestamibi (MIBI) gated SPECT measurement of myocardial function using the Germano algorithm Materials and Methods: Gated SPECT acquisition was repeated in the same position in 30 patients who received $^{201}Tl$ and in 26 who received $^{99m}Tc$-MIBI. The quantification of end-diastolic volume (EDV), end-systolic volume (ESV), and ejection fraction (EF) on $^{201}Tl\;and\;^{99m}Tc$-MIBI gated SPECT was processed independently using Cedars quantitative gated SPECT software. The reproducibility of the assessment of myocardial function on $^{201}Tl$ gated SPECT was compared with that of $^{99m}Tc$-MIBI gated SPECT Results: Correlation between the two measurements for volumes and EF was excellent by the repeated gated SPECT studies of $^{201}Tl$ (r=0.928 to 0.986; p<0.05) and $^{99m}Tc$-MIBI (r=0.979 to 0.997; p<0.05). However, Bland Altman analysis revealed the 95% limits of agreement (2 SD) for volumes and EF were tighter by repeated $^{99m}Tc$-MIBI gated SPECT (EDV: 14.1 ml, ESV: 9.4 ml and EF: 5.5%) than by repeated $^{201}Tl$ gated SPECT (EDV: 24.1 ml, ESV: 18.6 ml and EF: 10.3%). The root mean square (RMS) values of the coefficient of variation (CV) for volumes und EFs were smaller by repeated $^{99m}Tc$-MIBI gated SPECT (EDV: 2.1 ml, ESV 2.7 ml and EF: 2.3%) than by repeated $^{201}Tl$ gated SPECT (EDV: 3.2 ml, ESV: 3.5 ml and EF: 5.2%). Conclusion: $^{99m}Tc$-MIBI provides more reproducible volumes and EF than $^{201}Tl$ on repeated acquisition gated SPECT. $^{99m}Tc$-MIBI gated SPECT is the preferable method for the clinical monitoring of myocardial function.

  • PDF

Estimation of river discharge using satellite-derived flow signals and artificial neural network model: application to imjin river (Satellite-derived flow 시그널 및 인공신경망 모형을 활용한 임진강 유역 유출량 산정)

  • Li, Li;Kim, Hyunglok;Jun, Kyungsoo;Choi, Minha
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.7
    • /
    • pp.589-597
    • /
    • 2016
  • In this study, we investigated the use of satellite-derived flow (SDF) signals and a data-based model for the estimation of outflow for the river reach where in situ measurements are either completely unavailable or are difficult to access for hydraulic and hydrology analysis such as the upper basin of Imjin River. It has been demonstrated by many studies that the SDF signals can be used as the river width estimates and the correlation between SDF signals and river width is related to the shape of cross sections. To extract the nonlinear relationship between SDF signals and river outflow, Artificial Neural Network (ANN) model with SDF signals as its inputs were applied for the computation of flow discharge at Imjin Bridge located in Imjin River. 15 pixels were considered to extract SDF signals and Partial Mutual Information (PMI) algorithm was applied to identify the most relevant input variables among 150 candidate SDF signals (including 0~10 day lagged observations). The estimated discharges by ANN model were compared with the measured ones at Imjin Bridge gauging station and correlation coefficients of the training and validation were 0.86 and 0.72, respectively. It was found that if the 1 day previous discharge at Imjin bridge is considered as an input variable for ANN model, the correlation coefficients were improved to 0.90 and 0.83, respectively. Based on the results in this study, SDF signals along with some local measured data can play an useful role in river flow estimation and especially in flood forecasting for data-scarce regions as it can simulate the peak discharge and peak time of flood events with satisfactory accuracy.

A Phenology Modelling Using MODIS Time Series Data in South Korea (MODIS 시계열 자료(2001~2011) 및 Timesat 알고리즘에 기초한 남한 지역 식물계절 분석)

  • Kim, Nam-Shin;Cho, Yong-Chan;Oh, Seung-Hwan;Kwon, Hye-Jin;Kim, Gyung-Soon
    • Korean Journal of Ecology and Environment
    • /
    • v.47 no.3
    • /
    • pp.186-193
    • /
    • 2014
  • This study aimed to analyze spatio-temporal trends of phenological characteristics in South Korea by using MODIS EVI. For the phenology analysis, we had applied double logistic function to MODIS time-series data. Our results showed that starting date of phenology seems to have a tendency along with latitudinal trends. Starting date of phenology of Jeju Island and Mt. Sobeak went back for 0.38, 0.174 days per year, respectively whereas, Mt. Jiri and Mt. Seolak went forward for 0.32 days, 0.239 days and 0.119 days, respectively. Our results exhibited the fluctuation of plant phonological season rather than the change of phonological timing and season. Starting date of plant phenology by spatial distribution revealed tendency that starting date of mountain area was late, and basin and south foot of mountain was fast. In urban ares such as Seoul metropolitan, Masan, Changwon, Milyang, Daegu and Jeju, the phonological starting date went forward quickly. Pheonoligcal attributes such as starting date and leaf fall in urban areas likely being affected from heat island effect and related warming. Our study expressed that local and regional monitoring on phonological events and changes in Korea would be possible through MODIS data.

Design of a Bit-Serial Divider in GF(2$^{m}$ ) for Elliptic Curve Cryptosystem (타원곡선 암호시스템을 위한 GF(2$^{m}$ )상의 비트-시리얼 나눗셈기 설계)

  • 김창훈;홍춘표;김남식;권순학
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.12C
    • /
    • pp.1288-1298
    • /
    • 2002
  • To implement elliptic curve cryptosystem in GF(2$\^$m/) at high speed, a fast divider is required. Although bit-parallel architecture is well suited for high speed division operations, elliptic curve cryptosystem requires large m(at least 163) to support a sufficient security. In other words, since the bit-parallel architecture has an area complexity of 0(m$\^$m/), it is not suited for this application. In this paper, we propose a new serial-in serial-out systolic array for computing division operations in GF(2$\^$m/) using the standard basis representation. Based on a modified version of tile binary extended greatest common divisor algorithm, we obtain a new data dependence graph and design an efficient bit-serial systolic divider. The proposed divider has 0(m) time complexity and 0(m) area complexity. If input data come in continuously, the proposed divider can produce division results at a rate of one per m clock cycles, after an initial delay of 5m-2 cycles. Analysis shows that the proposed divider provides a significant reduction in both chip area and computational delay time compared to previously proposed systolic dividers with the same I/O format. Since the proposed divider can perform division operations at high speed with the reduced chip area, it is well suited for division circuit of elliptic curve cryptosystem. Furthermore, since the proposed architecture does not restrict the choice of irreducible polynomial, and has a unidirectional data flow and regularity, it provides a high flexibility and scalability with respect to the field size m.

Measurement and Quality Control of MIROS Wave Radar Data at Dokdo (독도 MIROS Wave Radar를 이용한 파랑관측 및 품질관리)

  • Jun, Hyunjung;Min, Yongchim;Jeong, Jin-Yong;Do, Kideok
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.2
    • /
    • pp.135-145
    • /
    • 2020
  • Wave observation is widely used to direct observation method for observing the water surface elevation using wave buoy or pressure gauge and remote-sensing wave observation method. The wave buoy and pressure gauge can produce high-quality wave data but have disadvantages of the high risk of damage and loss of the instrument, and high maintenance cost in the offshore area. On the other hand, remote observation method such as radar is easy to maintain by installing the equipment on the land, but the accuracy is somewhat lower than the direct observation method. This study investigates the data quality of MIROS Wave and Current Radar (MWR) installed at Dokdo and improve the data quality of remote wave observation data using the wave buoy (CWB) observation data operated by the Korea Meteorological Administration. We applied and developed the three types of wave data quality control; 1) the combined use (Optimal Filter) of the filter designed by MIROS (Reduce Noise Frequency, Phillips Check, Energy Level Check), 2) Spike Test Algorithm (Spike Test) developed by OOI (Ocean Observatories Initiative) and 3) a new filter (H-Ts QC) using the significant wave height-period relationship. As a result, the wave observation data of MWR using three quality control have some reliability about the significant wave height. On the other hand, there are still some errors in the significant wave period, so improvements are required. Also, since the wave observation data of MWR is different somewhat from the CWB data in high waves of over 3 m, further research such as collection and analysis of long-term remote wave observation data and filter development is necessary.