• Title/Summary/Keyword: Analog/Digital Converter

Search Result 588, Processing Time 0.026 seconds

Digitally controlled phase-locked loop with tracking analog-to-digital converter (Tracking analog-to-digital 변환기를 이용한 digital phase-locked loop)

  • Cha, Soo-Ho;Yoo, Chang-Sik
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.9 s.339
    • /
    • pp.35-40
    • /
    • 2005
  • A digitally controlled phase-locked loop (DCPLL) is described. The DCPLL has basically the same structure as a conventional analog PLL except for a tracking analog-to-digital converter (ADC). The tracking ADC generates the control signal for voltage controlled oscillator. Since the DCPLL employs neither digitally controlled oscillator nor time-to-digital converter-the key building blocks of digital PLL (DPLL), there is no need for the 03de-off between jitter, power consumption and silicon area. The DCPLL was implemented in a $0.18\mu$m CMOS process and the active area is 1mm $\times$0.35 mm The DCPLL consumes S9mW during the normal opuation and $984\{mu}W$ during the power-down mode from a 1.8V supply. The DCPLL shows 16.8ps ms jitter.

The Design of CMOS AD Converter for High Speed Embedded System Application (고속 임베디드 시스템 응용을 위한 CMOS AD 변환기 설계)

  • Kwon, Seung-Tag
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.5C
    • /
    • pp.378-385
    • /
    • 2008
  • This paper has been designed with CMOS Analog-to-Digital Converter(ADC) to use a high speed embedded system. It used flash ADC with a voltage estimator and comparator for background developed autozeroing. The speed of this architecture is almost similar to conventional flash ADC but the die size are lower due to reduced numbers of comparators and associated circuity. This ADC is implemented in a $0.25{\mu}m$ pure digital CMOS technology.

A Design of CMOS Analog-Digital Converter for High-Speed . Low-power Applications (고속 . 저전력 CMOS 아날로그-디지탈 변환기 설계)

  • Lee, Seong-Dae;Hong, Guk-Tae;Jeong, Gang-Min
    • The Transactions of the Korea Information Processing Society
    • /
    • v.2 no.1
    • /
    • pp.66-74
    • /
    • 1995
  • A 8-bit 15MHz CMOS subranging Analog-to-Digital converter for high-speed, low-power consumption applications is described. Subranging, 2 step flash, A/D converter used a new resistor string and a simple comparator architecture for the low power consumption and small chip area. Comparator exhibites 80dB loop gain, 50MHz conversion speed, 0.5mV offset and maximum error of voltage divider was 1mV. This Analog-to-Digital converter has been designed and fabricated in 1.2 m N-well CMOS technology. It consumed 150mW power at +5/-5V supply and delayed 65ns. The proposed Analog-to-Digital converter seems suitable for high- speed, low-power consumption, small area applications and one-chip mixed Analog- Digital system. Simulations are performed with PSPICE and a fabricated chip is tested.

  • PDF

Analysis of the linear Amplifier/Analog-Digital Converter Interface in a Digital Microwave Wideband Receiver (디지털 광대역 마이크로 웨이브 수신기에서의 선형 증폭기와 ADC 접 속의 해석)

  • 이민혁;장은영
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.110-113
    • /
    • 1998
  • An analysis of the relationship between a linear amplifier chain and an analog-to-digital converter(ADC) in a digital microwave widevand receiver, with respect to sensitivity and dynamic range issues, is presented. The effects of gain, third-order intermodulation products and ADC characteristics on the performance of the receiver are illustrated and design criteria for the linear amplifier chain given a specified ADC are developed. A computer program is used to calculate theretical receiver performance based on gain and third-order intermodulation product selections. Simulated results are also presented and compared with theoretical values.

  • PDF

A 9-Bit 80-MS/s CMOS Pipelined Folding A/D Converter with an Offset Canceling Technique

  • Lee, Seung-Chul;Jeon, Young-Deuk;Kwon, Jong-Kee
    • ETRI Journal
    • /
    • v.29 no.3
    • /
    • pp.408-410
    • /
    • 2007
  • A 9-bit 80-MS/s CMOS pipelined folding analog-to-digital converter employing offset-canceled preamplifiers and a subranging scheme is proposed to extend the resolution of a folding architecture. A fully differential dc-decoupled structure achieves high linearity in circuit design. The measured differential nonlinearity and integral nonlinearity of the prototype are ${\pm}0.6$ LSB and ${\pm}1.6$ LSB, respectively.

  • PDF

A Remote Control of a Buck-typed DC-DC Converter using DSP (DSP를 이용한 강압형 DC-DC 컨버터의 원격제어)

  • Kim, Youn-Seo;Yang, Oh
    • Proceedings of the KIEE Conference
    • /
    • 2002.11c
    • /
    • pp.305-308
    • /
    • 2002
  • Because the digital control includes microprocessor different from an analog control, the digital control enables to monitor internal parameters of DC-DC converter and to control output voltage remotely by communicating with a Window based PC and also to monitor whether exact voltage is output or not. These things are impossible in an analog control. In this paper, a simple buck converter controlled by DSP is implemented. This converter outputs 0V to 5V from 15V input voltage and is controlled by a PD algorithm using DSP(TMS320C31). Finally the response characteristics of a step reference voltage and a digital controlled converter are analyzed to verify the usefulness of this converter.

  • PDF

Ramp形 A-D 變煥器의 直線性 改善에 關하여

  • 이필재
    • The Magazine of the IEIE
    • /
    • v.2 no.2
    • /
    • pp.37-42
    • /
    • 1975
  • Various factors which affect the linearity and accuracy of the ramp type analog-to-digital converter have been investigated experimentally. A suggestion hav been made in the determination of circuit parameters with the emphasis on the improvement of the linearity and accuracy in the ramp type analog-to-digital conveter.

  • PDF

On the AGC Design of Wireless Communication Systems (무선통신 시스템에서 AGC 알고리즘 연구)

  • 예충일;김환우
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.6
    • /
    • pp.567-572
    • /
    • 2004
  • This paper shudies an automatic gain control(AGC) algorithm used in wireless communication cellular systems. The AGC design includes the selection of the appropriate analog-to-digital converter(ADC) and keeping the input power to the ADC constant to minimize the quantization noise generated from the analog-to-digital conversion process. In this paper the process to determine the required precision or the An is illustrated and the method to set the design parameters of the AGC is proposed. And the validity of the proposed algorithm is verified by computer simulation.

Quantization error model of signal converter in strapdown inertial navigation system (스트랩다운 관성항법장치의 신호변환기 양자화 오차모델)

  • 정태호;송기원
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.131-135
    • /
    • 1991
  • A quantization error model is suggested for analog to frequency(A/F) converter in strapdown inertial navigation system(SDINS),which is characterized by some white noise exciting the state variables. Also, effects on the performance of SDINS by analog to digital(A/D) converter and A/F converter are analyzed and compared via covariance simulation. As a result, A/F converter turns out to be superior to the A/D converter with respect to the induced navigation error and the difficulty in circuit realization. The quantization error model developed in this paper appears to be useful for optimal filter design.

  • PDF

Implementation of sigma-delta A/D converter IP for digital audio

  • Park SangBong;Lee YoungDae
    • Proceedings of the IEEK Conference
    • /
    • summer
    • /
    • pp.199-203
    • /
    • 2004
  • In this paper, we only describe the digital block of two-channel 18-bit analog-to-digital (A/D) converter employing sigma-delta method and xl28 decimation. The device contains two fourth comb filters with 1-bit input from sigma­delta modulator. each followed by a digital half band FIR(Finite Impulse Response) filters. The external analog sigma-delta modulators are sampled at 6.144MHz and the digital words are output at 48kHz. The fourth-order comb filter has designed 3 types of ways for optimal power consumption and signal-to-noise ratio. The following 3 digital filters are designed with 12tap, 22tap and 116tap to meet the specification. These filters eliminate images of the base band audio signal that exist at multiples of the input sample rate. We also designed these filters with 8bit and 16bit filter coefficient to analysis signal-to-noise ratio and hardware complexity. It also included digital output interface block for I2S serial data protocol, test circuit and internal input vector generator. It is fabricated with 0.35um HYNIX standard CMOS cell library with 3.3V supply voltage and the chip size is 2000um by 2000um. The function and the performance have been verified using Verilog XL logic simulator and Matlab tool.

  • PDF