• Title/Summary/Keyword: Anaerobic Fermentation

Search Result 312, Processing Time 0.03 seconds

Study on Low Temperature Tolerant Methane-Producing Bacteria for the Treatment of Agricultural and Livestock Wastes;III. Isolation of Low Temperature Tolerant Methanogens (농축산(農畜産) 폐기물(廢棄物) 처리(處理)를 위(爲)한 저온내성(低溫耐性) 메탄 생성균(生成菌)의 특성(特性)에 관(關)한 연구(硏究);III. 저온내성(低溫耐性) Methanogens의 분리(分離))

  • Kim, Kwang-Yong;Kim, Jai-Joung;Daniels, Lacy
    • Korean Journal of Environmental Agriculture
    • /
    • v.15 no.3
    • /
    • pp.362-371
    • /
    • 1996
  • This study was conducted to investigate the biochemical properties of isolated bacteria, low temperature tolerant methanogens which were selected for use as inoculum for anaerobic fermentation of agricultural and livestock wasted at low temperature. The results, obtained were summarized as follows: Low temperature tolerant methanogens were isolated from the samples which showed the high methanogenesis rate by enrichment culture at low temperature in methanol medium. These methanogens, Methanobacterium M-251 and Methanobacterium M-253 were isolated from swampy sediment at latitude $56.9^{\circ}$, Methanosarcina mazei M-372 from lake sediment IV at latitude $55.0^{\circ}$ N, and Methanobacterium formicicum M-375 from tidal land soil at latitude $37.0^{\circ}N$, respectively. The isolated anaerobic bacteria could not use sugars as carbon sources. The optimum pH value for the growth of M-251 and M-375 was 6.8, but those for M-253 and M-372 6.5 and 7.0, respectively. The minimum growth temperature of isolated, M-251 and M-253 were $8^{\circ}C$ and the optimum temperature $30^{\circ}C$, while the minimum of M-392 and M-395 were $13^{\circ}C$ and the optimum $37^{\circ}C$. The growth rate of isolates at $17.5^{\circ}C$ were lower by 32-50% than that of $30^{\circ}C$. The isolated Methanobacterium strains such as M-251, M-253, and M-375 have lower cell yield, 0.38-1.21g/1M $CH_4$ than 1.14-1.51g/1M $CH_4$ of Methanosarcina mazei M-372.

  • PDF

Microbial Leaching of Iron from Shinyemi Magnetite Ore (미생물을 이용한 신예미 자철광으로부터 철 침출에 관한 연구)

  • Roh, Yul;Oh, Jong-Min;Suh, Yong-Jae;Jang, Hee-Dong
    • Journal of the Mineralogical Society of Korea
    • /
    • v.20 no.4
    • /
    • pp.357-366
    • /
    • 2007
  • Microorganisms participate in a variety of geochemical processes such as weathering and formation of minerals, leaching of precious metals from minerals, and cycling of organic matter The objective of this study was to investigate biogeochemical processes of iron leaching from magnetite ore by iron-reducing bacteria isolated from intertidal flat sediments, southwestern part of Korea. Microbial iron leaching experiments were performed using magnetite ore, Shinyemi magnetite ore, in well-defined media with and without bacteria at room temperature for a month. Water soluble Fe and Mn during the leaching experiments were determined by ICP analysis of bioleached samples, and the resulting precipitated solids were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The extent of iron leaching from magnetite in the aerobic conditions (Fe = 15 mg/L and Mn = 3.41 mg/L) was lower than that in the anaerobic environments (Fe = 32.8 mg/L and Mn = 5.23 mg/L). The medium pH typically decreased from 8.3 to 7.2 during a month incubation. The Eh of the initial medium decreased from +144.9 mV to -331.7 mV in aerobic environments and from -2.3 mV to -494.6 mV in anaerobic environments upon incubation with the metal reducing microorganisms. The decrease in pH is due to glucose fermentation producing organic acids and $CO_2$. The ability of bacteria to leach soluble iron from crystalline magnetite could have significant implications for biogeochemical processes in sediments where Fe(III) in magnetite represents the largest pool of electron acceptor as well as to use as a novel biotechnology for leaching precious and heavy metals from raw materials.

Effect of Nitrous Oxide (N2O) Treatment on Quality of Peach (Prunus persica) Postharvest (복숭아(Prunus persica) 수확 후 아산화질소(N2O) 처리가 품질에 미치는 영향)

  • Nah, Hyun-Seok;Bae, Ro-Na;Lee, Seung-Koo
    • Horticultural Science & Technology
    • /
    • v.30 no.1
    • /
    • pp.42-49
    • /
    • 2012
  • This experiment was conducted to find out the effects of nitrous oxide ($N_2O$) on the postharvest quality of 'Janghowon hwangdo' peach fruits. Fruits were harvested at commercial maturity for marketing in late September, and treated with 70% $N_2O$ + 20% $O_2$ + 10% air, 80% $N_2O$ + 20% $O_2$, and 90% $N_2O$ + 10% $O_2$ for 48 h, and then stored at $15^{\circ}C$. No significant treatments for soluble sugar and titratable acidity contents were detected. However, good appearance and taste in peach fruit were maintained better in 80% $N_2O$ treatment than in air treatment. The treatment with 90% $N_2O$ had negative effects on weight loss and taste because of rotting by anaerobic fermentation. 80% $N_2O$ treated fruit had significantly higher fungus (Botrytis cinerea) growth inhibition of saprogenic approximately than air treatment until 12 days of storage. The browning and rotting at surface of peach were also retarded when peaches were treated with 80% $N_2O$ before they were artificially wounded. The activity of polyphenol oxidase (PPO) was inhibited about 80% in peach of 80% $N_2O$ treatment compared with in air treatment. The result showed that 80% $N_2O$ treatment was able to extend the shelf life of peach fruits through maintaining taste and inhibition of softening and browning by rotting and wounding during storage.

Characteristics of Anaerobic Acid Fermentation with Food waste leachate by Reactor Type of Retention Time for Landfill Site Injection (매립지 주입을 위한 음폐수 산발효 시 반응기 형태와 체류시간에 따른 특성)

  • Moon, Kwangseok;Kim, Jaehyung;Koo, Hyemin;Lim, Junhyuk;Kim, Nakjoo;Chang, Wonseok;Pak, Daewon
    • Journal of Energy Engineering
    • /
    • v.23 no.3
    • /
    • pp.125-131
    • /
    • 2014
  • In order to increase landfill gas (LFG) production with food waste leachate, this study was confirmed to be acidogenetic conditions for landfill site injection. Thereby, it was conducted for acidogenetic treatments to determine the decrease in viscosity and VFA production. After acidogenesis treatments, solubility of food waste leachate increased approximately 15%, and as a result, UASB and CSTR were similar by reactor type using the change of retention time. Based on the result of the change in viscosity by reactor type, efficiency of UASB showed approximately 11.38% of higher decrease in viscosity as $76.95{\pm}3.27%$ vs. CSTR. Also, VFA production showed the higher increase of 2.01 times (UASB) and 1.76 times (CSTR) respectively at the point of increasing retention time from 3 to 5 days. From the above results, efficiency of UASB in a reactor was relatively higher because large molecular lead to longer retention time than small molecular due to having screen effect in the fixed media.

An experimental study to develop operation technique of solid waste landfill for utilization of biomass (바이오매스 활용형 폐기물 매립지공법 개발을 위한 실험적 연구)

  • Kim, Hye-Jin;Park, Jin-Kyu;Jeong, Min-Kyo;Lee, Nam-hoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.15 no.1
    • /
    • pp.171-177
    • /
    • 2007
  • In order to investigate the effect of the methanogenic bacteria in bacteria in leachate on the degradability of landfill waste, this study has created 4 cylinder-shape PVC lysimeters (Diameter: 30cm, Height: 200cm, Volume: 140L) and for the biological treatment and recirculation of the leachate, two anaerobic batch reactors (Diameter: 20cm, Height: 30cm) were created. To simulate a conventional landfill, no recycling was done in L1. In L2, 1,068ml of leachate (twice of rainfall amount) was recycled. In L3 and L4, the leachate was anaerobically digested in a dark room (with $35{\pm}1^{\circ}C$) for a week and them recycled by 1,064ml and 2,128ml, respectively, with recycled water only. In terms of cumulative $CH_4$ production, however, L3 and L4 were much higher (three times) than L1 and L2. Between L3 and L4, the latter was 1.23 times higher than the former in terms of cumulative CH4 production. In other words, the more the methanogenic bacteria-activated leachate is recycled, the more active the degradation due to active methane fermentation by the recyled methanogenic bacteria. And methane recovery is different according to the amount of recycled the methanogenic bacteria in leachate.

  • PDF

Effects of Sodium Butyrate on the Biosynthesis of Sphingolipids in HT29, a Human Colon Cancer Cell Line (Sodium Butyrate 처리가 대장암 세포주인 HT29 Cell의 Sphingolipid 생합성에 미치는 영향)

  • 김희숙
    • Journal of Life Science
    • /
    • v.9 no.2
    • /
    • pp.160-168
    • /
    • 1999
  • Butyrate is one of the short-chain fatty acids that are present in the colon of mammals in millimolar concentration as a result of microbial anaerobic fermentation of dietary fiber, undigested starch, and proteins. In this study, sodium butyrate was examined in HT29 cell, human colonic cancer cell line, on cell viability, alkaline phosphatase activity, PLC-${\gamma}$1 expression and complex sphingolipid biosynthesis. Treatment with butyrate showed that the decrease of cell adhesion and viability was time-dependent. Sodium butyrate also induced to increase the activity of alkaline phosphatase which is a differentiation marker enzyme and decrease the expression of PLC-${\gamma}$1. Biosynthesis of sphingomyelin and galactosylceramide by butyrate treatment were decreased so fast but ceramide was increased 680dpm/mg protein% more than untreated group on first day and then decreased fast. In addition, acid ceramidase and neutral ceramidase activity were inhibited early stage by sodium butyrate. These results suggest that sodium butyrate causes cell differentiation or cell growth arrest of HT29 cell accompanied by early increase of ceramide content and alkaline phosphatase activity and decrease of galactosylceramide content and PLC-r1 expression.

  • PDF

Enhanced Acidification Efficiency of Sewage Sludge by Seaweed Addition (해조류 첨가를 통한 하수슬러지 산발효 효율 증대)

  • Shin, Sang-Ryong;Lee, Mo-Kwon;Kim, Min-Gyun;Hong, Seong-Min;Kim, Dong-Hoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.25 no.1
    • /
    • pp.15-21
    • /
    • 2017
  • In the present work, the synergistic effect of seaweed addition on organic acid production from sludge was investigated. The batch experiment was conducted at various mixing ratios of sewage sludge and seaweed (100:0, 75:25, 50:50, 25:75, 0:100 on a COD basis) under the substrate concentration of 20 g COD/L. The fermentation temperature was conducted under mesophilic condition ($35^{\circ}C$) and a heat-treated ($90^{\circ}C$ for 20 min) anaerobic digester sludge was used as a seeding source to suppress the methanogenic activity, The results showed that the amount of organic acid production increased as the content of seaweed increased: organic acids were 1.45, 3.22, 4.28, 5.24 and 4.82 g COD/L for the mixing ratio of 100:0, 75:25, 50:50, 25:75 and 0:100 respectively. The synergistic effect was calculated based on the organic acid production of individual sludge and seaweed, and was found to be 0.92, 1.14, 1.26 g COD/L at the mixing ratio of 75:25, 50:50 and 25:75, which indicates that 40% of synergy was obtained when 25% of seaweed was added. The synergistic effect could be ascribed to the high C/N ratio and biodegradability of seaweed.

Application of Statistical Analysis for Optimization of Organic Wastes Acidogenesis (유기성 폐기물의 산발효 최적화를 위한 통계학적 분석 방안의 적용)

  • Jeong, Emma;Kim, Hyun-Woo;Nam, Joo-Youn;Oh, Sae-Eun;Hong, Seung-Mo;Shin, Hang-Sik
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.8
    • /
    • pp.781-788
    • /
    • 2008
  • This study shows how to find out optimum co-substrate conditions and continuous operating parameters for maximum acidification of three different organic wastes - livestock wastewater, sewage sludge and food waste. Design of experiments and statistical analysis were revealed as appropriate optimization schemes in this study. Analyses of data obtained from batch tests demonstrated the optimum substrate mixing ratio, which was determined by maximum total volatile fatty acids(TVFA) increase and soluble chemical oxygen demand(SCOD) increase simultaneously. Suggested optimum mixing ratio of livestock wastewater, sewage sludge and food waste was 0.4 : 1.0 : 1.1 based on COD, respectively. Response surface methodology(RSM) contributed to find out optimum operating parameter - hydraulic retention time(HRT) and substrate concentration - for the semi-continuous acidogenic fermentation of mixed organic wastes. The optimum condition for maximum TVFA increase was 2 days of HRT and 29,237 mg COD/L. Empirical equations obtained through regression analysis could predict that TVFA increase would be 73%. To confirm the validity of the statistical experimental strategies, a confirmation experiment was conducted under the obtained optimum conditions, and relative error between theoretical and experimental results was within 4%. This result reflects that using statistical and RSM technique can be effectively used for the optimization of real waste treatment processes.

Direct-fed Microbials for Ruminant Animals

  • Seo, Ja-Kyeom;Kim, Seon-Woo;Kim, Myung-Hoo;Upadhaya, Santi D.;Kam, Dong-Keun;Ha, Jong-K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.12
    • /
    • pp.1657-1667
    • /
    • 2010
  • Direct-fed microbials (DFM) are dietary supplements that inhibit gastrointestinal infection and provide optimally regulated microbial environments in the digestive tract. As the use of antibiotics in ruminant feeds has been banned, DFM have been emphasized as antimicrobial replacements. Microorganisms that are used in DFM for ruminants may be classified as lactic acid producing bacteria (LAB), lactic acid utilizing bacteria (LUB), or other microorganisms including species of Lactobacillus, Bifidobacterium, Enterococcus, Streptococcus, Bacillus and Propionibacterium, strains of Megasphaera elsdenii and Prevotella bryantii and yeast products containing Saccharomyces and Aspergillus. LAB may have beneficial effects in the intestinal tract and rumen. Both LAB and LUB potentially moderate rumen conditions and improve feed efficiency. Yeast DFM may reduce harmful oxygen, prevent excess lactate production, increase feed digestibility, and improve fermentation in the rumen. DFM may also compete with and inhibit the growth of pathogens, stimulate immune function, and modulate microbial balance in the gastrointestinal tract. LAB may regulate the incidence of diarrhea, and improve weight gain and feed efficiency. LUB improved weight gain in calves. DFM has been reported to improve dry matter intake, milk yield, fat corrected milk yield and milk fat content in mature animals. However, contradictory reports about the effects of DFM, dosages, feeding times and frequencies, strains of DFM, and effects on different animal conditions are available. Cultivation and preparation of ready-to-use strict anaerobes as DFM may be cost-prohibitive, and dosing methods, such as drenching, that are required for anaerobic DFM are unlikely to be acceptable as general on-farm practice. Aero-tolerant rumen microorganisms are limited to only few species, although the potential isolation and utilization of aero-tolerant ruminal strains as DFM has been reported. Spore forming bacteria are characterized by convenience of preparation and effectiveness of DFM delivery to target organs and therefore have been proposed as DFM strains. Recent studies have supported the positive effects of DFM on ruminant performance.

Effect of Neupectin-L on Ethanol Production from Raw Starch Using a Co-Immobilized Aspergillus awamori and Zymomonas mobilis (Aspergillus awamori와 Zymomonas mobilis로 구성된 혼합고정화 배양계의 에탄올 생산에 미치는 Neupectin-L의 영향)

  • Lee, Sang-Won;Cho, Yong-Un;Kim, Hong-Chul;Park, Seok-Kyu;Sung, Nak-Kie
    • Applied Biological Chemistry
    • /
    • v.40 no.2
    • /
    • pp.89-94
    • /
    • 1997
  • In order to reduce energy input in direct ethanol production from raw starch by co-immobilized Aspergillus awamori(A) and Zymomonas mobilis(Z), A-Z 36 culture system which was changed to anaerobic after 36 h of aerobic fermentation without sterilization was investigated. This immobilized cell system can not be carried out under unsterile conditions because of growth of microbial contaminants from original medium. Among some food additives such as sorbic acid, benzoic acid, dehydroacetic acid, p-hydroxybenzoic acid, Vantocil IB and Neupectin-L, Vantocil IB and Neupectin-L were a potent antibacterial agent in A-Z 36 culture cell system and were not affected in hydrolysis of substrate as compared with the case of control. Ethanol yield(6.9 g/l) in system of addition of 0.1% Neupectin-L was slightly higher than that in control(6.4 g/l). When 2% starch was fed five times in fed-batch culture with 0.1% Neupectin-L, ethanol yield and productivity were 34 g/l and 2.0 g/l/day, respectively.

  • PDF