Application of Statistical Analysis for Optimization of Organic Wastes Acidogenesis

유기성 폐기물의 산발효 최적화를 위한 통계학적 분석 방안의 적용

  • Jeong, Emma (Department of Civil and Environmental Engineering, KAIST) ;
  • Kim, Hyun-Woo (Center for Environmental Biotechnology, Biodesign Institute at Arizona State University) ;
  • Nam, Joo-Youn (Department of Civil and Environmental Engineering, KAIST) ;
  • Oh, Sae-Eun (Department of Environmental Engineering, Hanbat National University) ;
  • Hong, Seung-Mo (Department of Environmental Research Team, Daewoo Institute of Construction Technology) ;
  • Shin, Hang-Sik (Department of Civil and Environmental Engineering, KAIST)
  • 정엠마 (KAIST 건설 및 환경공학과) ;
  • 김현우 (아리조나주립대학교 바이오디자인연구소, 환경생물공학센터) ;
  • 남주연 (KAIST 건설 및 환경공학과) ;
  • 오세은 (한밭대학교 환경공학과) ;
  • 홍승모 ((주)대우건설 기술연구원 환경연구팀) ;
  • 신항식 (KAIST 건설 및 환경공학과)
  • Published : 2008.08.31

Abstract

This study shows how to find out optimum co-substrate conditions and continuous operating parameters for maximum acidification of three different organic wastes - livestock wastewater, sewage sludge and food waste. Design of experiments and statistical analysis were revealed as appropriate optimization schemes in this study. Analyses of data obtained from batch tests demonstrated the optimum substrate mixing ratio, which was determined by maximum total volatile fatty acids(TVFA) increase and soluble chemical oxygen demand(SCOD) increase simultaneously. Suggested optimum mixing ratio of livestock wastewater, sewage sludge and food waste was 0.4 : 1.0 : 1.1 based on COD, respectively. Response surface methodology(RSM) contributed to find out optimum operating parameter - hydraulic retention time(HRT) and substrate concentration - for the semi-continuous acidogenic fermentation of mixed organic wastes. The optimum condition for maximum TVFA increase was 2 days of HRT and 29,237 mg COD/L. Empirical equations obtained through regression analysis could predict that TVFA increase would be 73%. To confirm the validity of the statistical experimental strategies, a confirmation experiment was conducted under the obtained optimum conditions, and relative error between theoretical and experimental results was within 4%. This result reflects that using statistical and RSM technique can be effectively used for the optimization of real waste treatment processes.

본 연구는 실험계획법과 통계학적 분석을 이용하여 세가지 유기성 폐기물(축산폐수, 하수슬러지, 음식물쓰레기)의 혼합 산발효를 위한 최적 운전 조건을 구하였다. 먼저, 세가지 기질의 최적 혼합비 도출을 위해 15회의 회분식 실험을 진행하였고, 획득한 실험 값의 통계학적 분석 결과 도출된 최적 혼합비는 chemical oxygen demand(COD) 기준으로 축산폐수, 하수슬러지, 음식물쓰레기 순으로 0.4 : 1.0 : 1.1로 나타났다. 도출된 최적 혼합비율로 준비된 기질을 대상으로 산발효 연속 운전 최적화를 수행하였다. 중요 운전 인자로서 hydraulic retention time(HRT)과 기질 농도를 설정하고, 실험계획법의 일종인 반응표면법(Response surface methodology, RSM)을 적용하였다. 3단계의 실험 계획에 의거한 연속 운전 결과, total volatile fatty acids(TVFA) 생성을 극대화 할 수 있는 최적 운전 조건은 HRT 2일, 기질 농도 29,237 mg COD/L로 밝혀졌고, 제시된 2차 경험적 모델식을 통해 최적 운전 조건에서 73%의 TVFA 증가율을 예상할 수 있었다. 도출된 모델식의 정확도 검증을 위한 실험 결과, 약 4%의 상대오차를 나타내 반응표면법을 비롯한 실험계획법과 통계학적 분석 방안이 성상 변화가 큰 실 폐기물의 최적화에도 효과적으로 적용될 수 있는 것으로 나타났다.

Keywords

References

  1. 임성일, 강성재, 김정래, 이병헌, '음식물 쓰레기와 일차 하수슬러지의 혼합비에 따른 산발효 특성에 관한 연구(I),' 대한환경공학회지, 24(6), 957-965(2002)
  2. Speece, R. E., Anaerobic biotechnology for industrial wastewaters, Archae Press, Tennessee, p. 120(1996)
  3. 이기형, 권성환, 이재효, 한순금, 권정안, 이동훈, '음식물류폐기물 산발효산물과 정화조오니의 혼합비율이 혐기성 병합 소화효율에 미치는 영향,' 한국폐기물학회지, 23(2), 143-156(2006)
  4. 박진식, 안철우, 장성호, '유기물부하에 따른 음식물찌꺼기의 산발효 특성,' 한국환경과학회지, 15(10), 975-982(2006) https://doi.org/10.5322/JES.2006.15.10.975
  5. Braun, R., Potential of Co-digestion-Limits and merits, I.E.A.(International Energy Agency), Bioenergy, Task 37: Energy from biogas and Landfill gas: Switzerland, p. 2 (2002)
  6. 신항식, 한선기, 송영채, 이채영, '음식물쓰레기를 처리하는 산발효조의 효율 향상 연구(I): 식종균의 효과,' 유기성자원학회지, 8(3), 112-117(2000)
  7. Kim, H. W., Shin, H. S., Han, S. K., OH, S. E., 'Response surface optimization of substrate for thermophilic anaerobic codigestion of sewage sludge and food waste,' J. Air Waste Manage. Assoc., 57, 309-318(2007) https://doi.org/10.1080/10473289.2007.10465334
  8. Montgomery D.C., Design and Analysis of Experiment, 5th ed., John Wiley & Sons, New York, pp. 427-442(2001)
  9. Hwang, S., Hansen, C. L., 'Modeling and optimization in anaerobic bioconversion of complex substrates to acetic and butyric acids,' Biotechnol. Bioeng., 54, 451-460 (1997) https://doi.org/10.1002/(SICI)1097-0290(19970605)54:5<451::AID-BIT5>3.0.CO;2-D
  10. Yue, Z., Yu, H., Harada, H., and Li, Y., 'Opimization of anaerobic acidogenesis of an aquatic plant, Canna indica L., by remen cultures,' Water Res., 41, 2361-2370(2007) https://doi.org/10.1016/j.watres.2007.02.031
  11. Imandi, S. B., Bandaru, V. V. R., Somalanka, S. R., Bandaru, S. R., and Garapati, H. R., 'Application of statistical experimental designs for the optimization of medium consitituents for the production of citric acid from pineapple waste,' Bioresour. Technol., 99, 4445-4450(2008) https://doi.org/10.1016/j.biortech.2007.08.071
  12. Wang, X., Niu, D., Yang, X., and Zhao, Y., 'Optimization of methane fermentation from effluent of biohydrogen fermentation process using response surface methodology,' Bioresour. Technol., 99, 4292-4299(2008) https://doi.org/10.1016/j.biortech.2007.08.046
  13. Mu, Y., Yu, H., and Wang, G., 'A kinetic to anaerobic hydrogen-producing process,' Water Res., 41, 1152-1160 (2007) https://doi.org/10.1016/j.watres.2006.11.047
  14. Waul, C., Arvin, E., and Schmidt, J. E., 'Model description and kinetic parameter analysis of MTBE biodegradation in a packed bed reactor,' Water Res., 42, 3122-3134(2008) https://doi.org/10.1016/j.watres.2008.02.034
  15. Zinatizadeh, A. A. L., Mohamed, A. R., Abdullah, A. Z., Mashitah, M. D., Hasnain Isa, M., and Najafpour, G. D., 'Process modeling and analysis of plam oil mill effluent treatment in an up-flow anaerobic sludge fixed film bioreactor using response surface methodology(RSM),' Water Res., 40, 3193-3208(2006) https://doi.org/10.1016/j.watres.2006.07.005
  16. Owen, W. F., Stuckey, D. C., Healy, J. B., Young, L. Y., and McCarty, P. L., 'Bioassay for Monitoring Biochemical Methane Potential and Anaerobic Toxicity,' Water Res., 13, 485-492(1979) https://doi.org/10.1016/0043-1354(79)90043-5
  17. Bouwer, E. J., McCarty, P. L., 'Effects of 2-Bromoethanesulfonic Acid and 2-Chloroethanefulfonic Acid on acetate utilization in a continuous-flow methanogenic fixed-film column,' Appl. Environ. Microbiol., 45(4), 1408-1410(1983)
  18. Yang, K., Yu, Y., and Hwang, S., 'Selective optimization in thermophilic acidogenesis of cheese-whey wastewater to acetic and butyric acids: partial acidification and methanation,' Water Res., 37, 2467-2477(2003) https://doi.org/10.1016/S0043-1354(03)00006-X
  19. APHA. Standard Methods for the examination of water and wastewater ISBN: 0875532357; Greenberg, A. E.; Clesceri, L. S.; Eaton, A. D., Ed.; American Public Health Association, American Water Works Association and Water Environment Federation: Washington DC(2005)
  20. 염기선, 허재성, 곽병만, '반응표면법을 이용한 구조물 최적설계 프로그램의 개발,' 대한기계학회 춘추학술대회, 1(3), 580-585(2001)
  21. McCarty, P.L. Anaerobic waste treatment fundamentals, Public Works, September to December(1964)
  22. Calli, B., Mertoglu, B., Inanc, B., Yenigun, O., 'Effects of high free ammonia concentration on the performances of anaerobic bioreactors,' Process Biochemistry, 40, 1285-1292(2005) https://doi.org/10.1016/j.procbio.2004.05.008