• Title/Summary/Keyword: Amplify-and-Forward Mode

Search Result 14, Processing Time 0.207 seconds

Performance of Two-User Two-Way Amplify-and-Forward Relaying Systems with Scheduling

  • Fang, Zhaoxi;Li, Guosheng;Li, Jun
    • ETRI Journal
    • /
    • v.33 no.5
    • /
    • pp.689-694
    • /
    • 2011
  • In this paper, we study scheduling schemes for two-user two-way wireless relaying systems. Two transmission modes are considered: point-to-point direct transmission and two-way amplify-and-forward relaying. An optimal scheduling scheme that opportunistically selects the best transmission mode for each user is proposed to minimize the sum bit error rate (BER). The performance lower bound of the optimal scheduling scheme is analyzed, and closed-form expression of the lower-bound BER is derived. However, for optimal scheduling, the scheduler requires the knowledge of channel state information (CSI) of all links. To reduce the feedback information of CSI, we also propose a suboptimal scheduling scheme that selects the transmission mode using only the CSI of two direct links. Simulation results show that there are 4 dB to 8 dB gains for the proposed optimal and suboptimal schemes over the fixed direct transmission and fixed two-way relayed transmission scheme. The performance gap between the optimal and suboptimal scheduling schemes is small, which implies a good trade-off between implementation complexity and system performance.

Cooperative Diversity Based on Interleavers and Its efficient Algorithm in Amplify-And-Forward Relay Networks (Amplify-Forward Relay Network의 인터리버에 근거한 협동 다이버시티와 그 효과적 알고리즘)

  • Yan, Yier;Jo, Gye-Mun;Balakannan, S.P.;Lee, Moon-Ho
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.6
    • /
    • pp.94-102
    • /
    • 2009
  • In [1], the authors have proposed a novel scheme to achieve full diversity and to combat the time delays from each relay node, but decode-and-forward (DF) model operation mode puts more processing burden on the relay. In this paper, we not only extend their model into amplify and forward (AF) model proposed in [2],[3], but also propose an efficient decoding algorithm, which is able to order the joint channel coefficients of overall channel consisting of source-relay link and relay-destination link and cancels the previous decoded symbols at the next decoding procedure. The simulation results show that this algorithm efficiently improves its performance achieving 2-3dB gain compared to [1] in high SNR region and also useful to DF achieving more than 3dB gain compared to an original algorithm.

Single Carrier Frequency Domain Equalization in 3-slot Based Amplify-and-Forward Relaying Network for Shadow Area (음영 지역을 위한 3-슬롯 기반의 AF 방식 중계기 네트워크에서의 단일 반송파 주파수 대역 등화 기법)

  • Won, Hui-Chul
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.17 no.7
    • /
    • pp.9-16
    • /
    • 2012
  • In order to extend cell coverage and to cope with shadow areas, a relay-assisted wireless communications system has been widely studied. In this paper, we propose new equalization method for single carrier (SC) frequency domain equalizer (FDE) in amplify-and-forward (AF) relaying multi-path networks to improve the performance at shadow areas. The performance of SC-FDE system in 3-slot based multi-path networks can be improved considerably with the diversity gain which we obtain by equalizing the combined signal from relays by means of the minimum mean square error (MMSE) criteria. We find the weighting coefficients of maximum ratio combining (MRC) and the tap coefficients of MMSE equalizer for SC-FDE in AF relaying multi-path networks. Simulation results show that the proposed system considerably outperforms the conventional SC-FDE system.

Performance of Spectrum Sensing Using AF Cooperative Relay for Cognitive Radio System (인지 무선 통신에서 AF 협력 릴레이를 이용한 스펙트럼 센싱 성능)

  • Lee, Mi-Sun;Kim, Yoon-Hyun;Kim, Jin-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.4
    • /
    • pp.31-36
    • /
    • 2012
  • In this paper, we proposed spectrum sensing using cooperative relay to solve problem of sensing performance degradation due to CPE (Customer-Premises equipments) which causes low SNR (signal-to-noise ratio) problem. In cooperative communication system, AF (amplify-and-forward) and DF (decoded-and-forward) is widely used for relay mechanism. Also, it is expected that cooperative relay scheme guarantees the high sensing performance by its diversity gain. Based on these backgrounds, in this paper, we apply to cooperative relay scheme to the CR (Cognitive Radio) system, and simulation results show comparison of the sensing performance.

Two-step Scheduling With Reduced Feedback Overhead in Multiuser Relay Systems (다중 사용자 릴레이 시스템에서 감소된 피드백 정보를 이용한 두 단계 스케줄링 기법)

  • Jang, Yong-Up;Shin, Won-Yong;Kim, A-Jung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.5A
    • /
    • pp.511-520
    • /
    • 2011
  • In this paper, we introduce a multiuser (MU) scheduling method for multiuser amplify-and-forward relay systems, which selects both the transmission mode, i.e., either one- or two-hop transmission, and the desired user via two steps. A closed-form expression for the average achievable rate of the proposed scheduling is derived under two transmission modes with MU scheduling, and its asymptotic solution is also analyzed in the limit of large number of mobile stations. Based on the analysis, we perform our two-step scheduling algorithm: the transmission mode selection followed by the user selection that needs partial feedback for instantaneous signal-to-noise ratios (SNRs) to the base station. We also analyze the average SNR condition such that the MU diversity gain is fully exploited. In addition, it is examined how to further reduce a quantity of feedback under certain conditions. The proposed algorithm shows the comparable achievable rate to that of the optimal one using full feedback information, while its required feedback overhead is reduced below half of the optimal one.

Energy Efficiency Maximization for Energy Harvesting Bidirectional Cooperative Sensor Networks with AF Mode

  • Xu, Siyang;Song, Xin;Xia, Lin;Xie, Zhigang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.6
    • /
    • pp.2686-2708
    • /
    • 2020
  • This paper investigates the energy efficiency of energy harvesting (EH) bidirectional cooperative sensor networks, in which the considered system model enables the uplink information transmission from the sensor (SN) to access point (AP) and the energy supply for the amplify-and-forward (AF) relay and SN using power-splitting (PS) or time-switching (TS) protocol. Considering the minimum EH activation constraint and quality of service (QoS) requirement, energy efficiency is maximized by jointly optimizing the resource division ratio and transmission power. To cope with the non-convexity of the optimizations, we propose the low complexity iterative algorithm based on fractional programming and alternative search method (FAS). The key idea of the proposed algorithm first transforms the objective function into the parameterized polynomial subtractive form. Then we decompose the optimization into two convex sub-problems, which can be solved by conventional convex programming. Simulation results validate that the proposed schemes have better output performance and the iterative algorithm has a fast convergence rate.

Closed Form Expression for Signal Transmission via AF Relaying over Nakagami-m Fading Channels

  • Mughal, Muhammad Ozair;Kim, Sun-Woo
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.213-214
    • /
    • 2008
  • In this paper, we analyze the performance of a cooperative communication wireless network over independent and identically distributed (IID) Nakagami-m fading channels. A simple transmission scheme is considered where the relay is operating in amplify-forward (AF) mode. A closed-form expression for symbol error rate (SER) is obtained using the moment generating function (MGF) of the total signal to noise ratio (SNR) of the transmitted signal with binary phase shift keying (BPSK).

  • PDF

Performance Analysis of the Amplify-and-Forward Scheme under Interference Constraint and Physical Layer Security (물리 계층 보안과 간섭 제약 환경에서 증폭 후 전송 기법의 성능 분석)

  • Pham, Ngoc Son;Kong, Hyung-Yun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.1
    • /
    • pp.179-187
    • /
    • 2014
  • The underlay protocol is a cognitive radio method in which secondary or cognitive users use the same frequency without affecting the quality of service (QoS) for the primary users. In addition, because of the broadcast characteristics of the wireless environment, some nodes, which are called eavesdropper nodes, want to illegally receive information that is intended for other communication links. Hence, Physical Layer Security is applied considering the achievable secrecy rate (ASR) to prevent this from happening. In this paper, a performance analysis of the amplify-and-forward scheme under an interference constraint and Physical Layer Security is investigated in the cooperative communication mode. In this model, the relays use an amplify-and- forward method to help transmit signals from a source to a destination. The best relay is chosen using an opportunistic relay selection method, which is based on the end-to-end ASR. The system performance is evaluated in terms of the outage probability of the ASR. The lower and upper bounds of this probability, based on the global statistical channel state information (CSI), are derived in closed form. Our simulation results show that the system performance improves when the distances from the relays to the eavesdropper are larger than the distances from the relays to the destination, and the cognitive network is far enough from the primary user.

Device-to-Device Relay Cooperative Transmission Based on Network Coding

  • Wang, Jing;Ouyang, Mingsheng;Liang, Wei;Hou, Jun;Liu, Xiangyang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.7
    • /
    • pp.3431-3445
    • /
    • 2017
  • Due to the advantages of low transmit power consumption, high spectral efficiency and extended system coverage, Device-to-Device (D2D) communication has drawn explosive attention in wireless communication field. Considering that intra-cell interference caused between cellular signals and D2D signals, in this paper, a network coding-based D2D relay cooperative transmission algorithm is proposed. Under D2D single-hop relay transmission mode, cellular interfering signals can be regarded as useful signals to code with D2D signals at D2D relay node. Using cellular interfering signals and network coded signals, D2D receiver restores the D2D signals to achieve the effect of interference suppression. Theoretical analysis shows that, compared with Amplify-and-forward (AF) mode and Decode-and-forward (DF) mode, the proposed algorithm can dramatically increase the link achievable rate. Furthermore, simulation experiment verifies that by employing the proposed algorithm, the interference signals in D2D communication can be eliminated effectively, and meanwhile the symbol error rate (SER) performance can be improved.

An energy-efficiency approach for bidirectional amplified-and-forward relaying with asymmetric traffic in OFDM systems

  • Jia, Nianlong;Feng, Wenjiang;Zhong, Yuanchang;Kang, Hong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.11
    • /
    • pp.4087-4102
    • /
    • 2014
  • Two-way relaying is an effective way of improving system spectral efficiency by making use of physical layer network coding. However, energy efficiency in OFDM-based bidirectional relaying with asymmetric traffic requirement has not been investigated. In this study, we focused on subcarrier transmission mode selection, bit loading, and power allocation in a multicarrier single amplified-and-forward relay system. In this scheme, each subcarrier can operate in two transmission modes: one-way relaying and two-way relaying. The problem is formulated as a mixed integer programming problem. We adopt a structural approximation optimization method that first decouples the original problem into two suboptimal problems with fixed subcarrier subsets and then finds the optimal subcarrier assignment subsets. Although the suboptimal problems are nonconvex, the results obtained for a single-tone system are used to transform them to convex problems. To find the optimal subcarrier assignment subsets, an iterative algorithm based on subcarrier ranking and matching is developed. Simulation results show that the proposed method can improve system performance compared with conventional methods. Some interesting insights are also obtained via simulation.