• Title/Summary/Keyword: Ammonia MBE

Search Result 5, Processing Time 0.021 seconds

Hybrid MBE Growth of Crack-Free GaN Layers on Si (110) Substrates

  • Park, Cheol-Hyeon;O, Jae-Eung;No, Yeong-Gyun;Lee, Sang-Tae;Kim, Mun-Deok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.183-184
    • /
    • 2013
  • Two main MBE growth techniques have been used: plasma-assisted MBE (PA-MBE), which utilizes a rf plasma to supply active nitrogen, and ammonia MBE, in which nitrogen is supplied by pyrolysis of NH3 on the sample surface during growth. PA-MBE is typically performed under metal-rich growth conditions, which results in the formation of gallium droplets on the sample surface and a narrow range of conditions for optimal growth. In contrast, high-quality GaN films can be grown by ammonia MBE under an excess nitrogen flux, which in principle should result in improved device uniformity due to the elimination of droplets and wider range of stable growth conditions. A drawback of ammonia MBE, on the other hand, is a serious memory effect of NH3 condensed on the cryo-panels and the vicinity of heaters, which ruins the control of critical growth stages, i.e. the native oxide desorption and the surface reconstruction, and the accurate control of V/III ratio, especially in the initial stage of seed layer growth. In this paper, we demonstrate that the reliable and reproducible growth of GaN on Si (110) substrates is successfully achieved by combining two MBE growth technologies using rf plasma and ammonia and setting a proper growth protocol. Samples were grown in a MBE system equipped with both a nitrogen rf plasma source (SVT) and an ammonia source. The ammonia gas purity was >99.9999% and further purified by using a getter filter. The custom-made injector designed to focus the ammonia flux onto the substrate was used for the gas delivery, while aluminum and gallium were provided via conventional effusion cells. The growth sequence to minimize the residual ammonia and subsequent memory effects is the following: (1) Native oxides are desorbed at $750^{\circ}C$ (Fig. (a) for [$1^-10$] and [001] azimuth) (2) 40 nm thick AlN is first grown using nitrogen rf plasma source at $900^{\circ}C$ nder the optimized condition to maintain the layer by layer growth of AlN buffer layer and slightly Al-rich condition. (Fig. (b)) (3) After switching to ammonia source, GaN growth is initiated with different V/III ratio and temperature conditions. A streaky RHEED pattern with an appearance of a weak ($2{\times}2$) reconstruction characteristic of Ga-polarity is observed all along the growth of subsequent GaN layer under optimized conditions. (Fig. (c)) The structural properties as well as dislocation densities as a function of growth conditions have been investigated using symmetrical and asymmetrical x-ray rocking curves. The electrical characteristics as a function of buffer and GaN layer growth conditions as well as the growth sequence will be also discussed. Figure: (a) RHEED pattern after oxide desorption (b) after 40 nm thick AlN growth using nitrogen rf plasma source and (c) after 600 nm thick GaN growth using ammonia source for (upper) [110] and (lower) [001] azimuth.

  • PDF

The Effect of V/III Ratio on Growth Mechanism of Gas Source MBE (가스소스 MBE에서 원료공급량이 결정성장 기구에 미치는 영향)

  • Choi, Sungkuk;Yoo, Jinyeop;Jung, Soohoon;Chang, Wonbeom;Chang, Jiho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.6
    • /
    • pp.446-450
    • /
    • 2013
  • Growth mechanism of GS-MBE(Gas source-Molecular Beam Epitaxy) has been investigated. We observed that the growth rate of GaN films is changing from 520 nm/h to 440 nm/h by the variation of V/III ratio under nitrogen-rich growth condition. It was explained that the amount of hydrogen on the growth front varies by the ammonia flow, and gallium hydrides are generated on the surface by a reaction of hydrogen and gallium, resultantly the amount of gallium supplying is changing along with the $NH_3$ flow. Reflection high energy electron diffraction (RHEED) observation was used to confirm the N-rich condition. The crystal quality of GaN was estimated by photoluminescence (PL) and X-ray diffraction (XRD).

Optical and Structural Properties of GaN Grown on AlN/Si via Molecular Beam Epitaxy Using Ammonia (암모니아를 이용하여 분자선에피탁시 방법으로 AIN/Si 기판에 성장시킨 GaN의 구조적,광학적 특성)

  • Kim, Gyeong-Hyeon;Hong, Seong-Ui;Gang, Seok-Jun;Lee, Sang-Hyeon;Kim, Chang-Su;Kim, Do-Jin;Han, Gi-Pyeong;Baek, Mun-Cheol
    • Korean Journal of Materials Research
    • /
    • v.12 no.5
    • /
    • pp.387-390
    • /
    • 2002
  • A new approach of using double buffer layers of AlN and GaN for growth of GaN films on Si has been undertaken via molecular beam epitaxy using ammonia. The first buffers layer of AlN was grown using $N_2$plasma and the second of GaN was grown using ammonia. The surface roughness of the grown films was investigated by atomic force microscope and was compared with the normally grown films on sapphire. Double crystal x-ray rocking curve and low temperature photoluminescence techniques were employed for structural and optical properties examination. Donor bound exciton peak at 3.481 eV with full width half maximum of 41 meV was observed at 13K.

Growth and characterization of molecular beam epitaxy grown GaN thin films using single source precursor with ammonia

  • Chandrasekar, P.V.;Lim, Hyun-Chul;Chang, Dong-Mi;Ahn, Se-Yong;Kim, Chang-Gyoun;Kim, Do-Jin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.174-174
    • /
    • 2010
  • Gallium Nitride(GaN) attracts great attention due to their wide band gap energy (3.4eV), high thermal stability to the solid state lighting devices like LED, Laser diode, UV photo detector, spintronic devices, solar cells, sensors etc. Recently, researchers are interested in synthesis of polycrystalline and amorphous GaN which has also attracted towards optoelectronic device applications significantly. One of the alternatives to deposit GaN at low temperature is to use Single Source Molecular Percursor (SSP) which provides preformed Ga-N bonding. Moreover, our group succeeds in hybridization of SSP synthesized GaN with Single wall carbon nanotube which could be applicable in field emitting devices, hybrid LEDs and sensors. In this work, the GaN thin films were deposited on c-axis oriented sapphire substrate by MBE (Molecular Beam Epitaxy) using novel single source precursor of dimethyl gallium azido-tert-butylamine($Me_2Ga(N_3)NH_2C(CH_3)_3$) with additional source of ammonia. The surface morphology, structural and optical properties of GaN thin films were analyzed for the deposition in the temperature range of $600^{\circ}C$ to $750^{\circ}C$. Electrical properties of deposited thin films were carried out by four point probe technique and home made Hall effect measurement. The effect of ammonia on the crystallinity, microstructure and optical properties of as-deposited thin films are discussed briefly. The crystalline quality of GaN thin film was improved with substrate temperature as indicated by XRD rocking curve measurement. Photoluminescence measurement shows broad emission around 350nm-650nm which could be related to impurities or defects.

  • PDF

Growth of InGaN on sapphire by GSMBE(gas source molecular beam epitaxy) using $DMH_y$(dimethylhydrazine) as nitrogen source at low temperature (Nitrogen source로 암모니아, $DMH_y$(dimethylhydrazine)을 사용해 Gas-Source MBE로 성장된 InGaN 박막특성)

  • Cho, Hae-Jong;Han, Kyo-Yong;Suh, Young-Suk;Park, Kang-Sa;Misawa, Yusuke
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.1010-1014
    • /
    • 2004
  • High quality GaN layer and $In_xGa_{1-x}N$ alloy were obtained on (0001)sapphire substrate using ammonia$(NH_3)$ and dimethylhydrazine$(DMH_y)$ as a nitrogen source by gas source molecular hem epitaxy(GSMBE) respectively. As a result, RHEED is used to investigate the relaxation processes which take place during the growth of GaN and $In_xGa_{1-x}N$. The full Width at half maximum of the x-ray diffraction(FWHM) rocking curve measured from Plane of GaN has exhibitted as narrow as 8 arcmin. Photoluminescence measurement of GaN and $In_xGa_{1-x}N$ were investigated at room temperature, where the intensity of the band edge emission is much stronger than that of deep level emission. In content of $In_xGa_{1-x}N$ epitaxial layer according to growth condition was investigated.

  • PDF