DOI QR코드

DOI QR Code

The Effect of V/III Ratio on Growth Mechanism of Gas Source MBE

가스소스 MBE에서 원료공급량이 결정성장 기구에 미치는 영향

  • Choi, Sungkuk (Department of Applied Physics, Korea Maritime University) ;
  • Yoo, Jinyeop (Department of Applied Physics, Korea Maritime University) ;
  • Jung, Soohoon (Department of Applied Physics, Korea Maritime University) ;
  • Chang, Wonbeom (Department of Applied Physics, Korea Maritime University) ;
  • Chang, Jiho (Department of Applied Physics, Korea Maritime University)
  • 최성국 (한국해양대학교 응용과학과) ;
  • 유진엽 (한국해양대학교 응용과학과) ;
  • 정수훈 (한국해양대학교 응용과학과) ;
  • 장원범 (한국해양대학교 응용과학과) ;
  • 장지호 (한국해양대학교 응용과학과)
  • Received : 2012.07.12
  • Accepted : 2013.05.23
  • Published : 2013.06.01

Abstract

Growth mechanism of GS-MBE(Gas source-Molecular Beam Epitaxy) has been investigated. We observed that the growth rate of GaN films is changing from 520 nm/h to 440 nm/h by the variation of V/III ratio under nitrogen-rich growth condition. It was explained that the amount of hydrogen on the growth front varies by the ammonia flow, and gallium hydrides are generated on the surface by a reaction of hydrogen and gallium, resultantly the amount of gallium supplying is changing along with the $NH_3$ flow. Reflection high energy electron diffraction (RHEED) observation was used to confirm the N-rich condition. The crystal quality of GaN was estimated by photoluminescence (PL) and X-ray diffraction (XRD).

Keywords

References

  1. T. D. Moustakas and R. J. Molnar, Mater. Res. Soc. Symp. Proc., 281, 253 (1993).
  2. J. C. Zolper and R. J. Shul, MRS Bull., 22, 36 (1997).
  3. M. Mesrine, N. Grandjean, and J. Massies, Appl. Phys. Lett., 72, 350 (1998). https://doi.org/10.1063/1.120733
  4. H. Morkoc, A. Botchkarew, A. Salvador, and B. Sverdlov, J. Cryst. Growth, 150, 887 (1995). https://doi.org/10.1016/0022-0248(95)80067-M
  5. T. D. Moustakas, Mater. Res. Soc. Symp. Proc., 395, 111 (1996).
  6. Xiaobing Li, Dianzhao Sun, Jianping Zhang, and Meiying Kong, J. Cryst. Growth, 191, 31 (1998). https://doi.org/10.1016/S0022-0248(98)00028-1
  7. N. Grandjean and J. Massies, Appl. Phys. Lett., 71, 1816 (1997). https://doi.org/10.1063/1.119408
  8. B. Gil, Group III Nitride Semiconductor Compounds (Clarendon, Oxford, 1998).
  9. T. Yao and S. Maekawz, J. Cryst. Growth, 53, 423 (1981). https://doi.org/10.1016/0022-0248(81)90093-2
  10. D. L .Smith and V. Y. Pickhardt, J. Appl. Phys. Lett., 46, 2366 (1975). https://doi.org/10.1063/1.321915
  11. C. T. Foxon and B. A. Joyce, Surf. Sci., 50, 434 (1975). https://doi.org/10.1016/0039-6028(75)90035-7
  12. T. Yao, M. Ogura, S. Matsuoka, and T. Morishita, Jpn. J. Appl. Phys., 22, L144 (1983). https://doi.org/10.1143/JJAP.22.L144
  13. A. Y. Cho, M. B. Panish, and I. Hayashi, Proc. Symp. GaAs and Related Compounds, 2, 18 (1970).
  14. N. Grandjean, M. Leroux, J. Massies, M. Mesrine, and M. Laugt, Jpn. J. Appl. Phys., 38, 618 (1999). https://doi.org/10.1143/JJAP.38.618
  15. M. V. Averyanova, I. N. Przhevalsky, S. Y. Karpov, Y. N. Makarov, M. S. Ramm, and R. A. Talalaev, Internet MRS J. Nitride Semicond. Res., 1, 31 (1996). https://doi.org/10.1557/S1092578300002039
  16. S. Yu. Karpov, Yu. N. Makarov, M. S. Ramm, and R. A. Talalaev, J. Cryst. Growth, 187, 397 (1998). https://doi.org/10.1016/S0022-0248(98)00005-0
  17. R. Held, D. E. Grawford, A. M. Johnsto, A. M. Dabiran, and P. L. Cohen, J. Electron. Mater., 26, 272 (1997). https://doi.org/10.1007/s11664-997-0163-z
  18. S. C. Jain, M. Willander, J. Narayan, and R. V. Overstraeten, J. Appl. Phys., 87 (2000).