• Title/Summary/Keyword: Ammonia Gas

Search Result 718, Processing Time 0.033 seconds

Simultaneous Carbon and Nitrogen Removal Using an Integrated System of High-Rate Anaerobic Reactor and Aerobic Biofilter (고효율 혐기성반응조 및 호기성여상 조합시스템에 의한 질소·유기물 동시 제거)

  • Sung, Moon Sung;Chang, Duk;Seo, Seong Cheol;Chung, Bo Rim
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.13 no.2
    • /
    • pp.55-65
    • /
    • 1999
  • AF(anaerobic filter)/BAF(biological aerated filter) system and UASB(upflow anaerobic sludge blanket)/BAF system, of which system effluents were recirculated to the anaerobic reactors in each system, were operated in order to investigate the performance in simultaneous removal of organics and nitrogen in high-strength dairy wastewater. Advanced anaerobic treatment processes of AF and UASB were evaluated on applicability as pre-denitrification reactors, and BAF was also evaluated on the performance in oxidizing the remaining organics and ammonia nitrogen. At system HRTs of 4.0 to 4.5 days and recirculation ratios of one to three, the AF/BAF system could achieve more than 99% of organics removals and 64 to 78% of total nitrogen removals depending upon the recirculation ratio. Although the UASB/BAF system also showed more than 99% of organics removals, total nitrogen removals in the UASB/BAF system were 53 to 66% which are lower than those in the AF/BAF system at the corresponding recirculation ratios. Optimum recirculation ratios considering simultaneous removal of organics and nitrogen and cost-effectiveness, were in the range of two to three. The upflow AF packed with crossflow module media, as a primary treatment of the anaerobic reactor/BAF system, showed better performances in denitrification, SS removals, and gas production than the UASB. Higher loading rate of suspended solids from the UASB increased the backwashing times in the following BAF. Especially, at a recirculation ratio of three in the UASB/BAF system, the increase in head loss due to clogging in the BAF caused frequent backwashing, at least once d day. The BAF showed the high nitrification efficiency of average 99.2% and organics removals more than 90% at organics loading rate less than $1.4KgCOD/m^3/d$ and $COD/NH_3-N$ ratio less than 6.4. It was proved that the simplified anaerobic reactor/BAF system could maximize the organics removal and achieve high nitrogen removal efficiencies through recirculation of system effluents to the anaerobic reactor. The AF/BAF system can, especially, be a cost effective and competitive alternative for the simultaneous removal of organics ana nitrogen from wastewaters.

  • PDF

Physical Properties of Hybrid Boards Composed of Green Tea, Charcoals and Wood Fiber (녹차-숯-목재섬유 복합보드의 물리적 특성)

  • Park, Han-Min;Heo, Hwang-Sun;Sung, Eun-Jong;Nam, Kyeong-Han;Lim, Jae-Seop
    • Journal of the Korean Wood Science and Technology
    • /
    • v.40 no.6
    • /
    • pp.406-417
    • /
    • 2012
  • In this study, eco-friendly hybrid composite boards were manufactured from green tea, three kinds of charcoals and wood fiber for developing interior materials to reinforce the functionalities such as the deodorization and the absorbability on the green tea-wood fiber hybrid boards in the previous researches. The effects of kind of raw materials and the component ratio of raw materials on dimensional stability, deodorization and emission of formaldehyde were investigated. Thickness swelling of the hybrid composite boards increased with increasing of component ratio of green tea and charcoals, but the values were markedly lower than that of Korean standard (KS) for commercial medium density fiber board (MDF), except for hybrid composite boards composed of greed tea, activated charcoal and wood fiber. Reduction rate of ammonia gas for the hybrid composite boards composed of green tea, activated charcoal and wood fiber showed a high value of 96% after 30 minute from the beginning of the test, and the other hybrid boards also showed a high value of about 95% after one hour. Emission amount of formaldehyde was similar to that of $E_0$ grade in case of using $E_1$ grade urea resin, and was similar to that of super $E_0$ grade in case of using $E_0$ grade urea resin.

Some Prophylactic Options to Mitigate Methane Emi ssion from Animal Agriculture in Japan

  • Takahashi, Junichi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.2
    • /
    • pp.285-294
    • /
    • 2011
  • The abatement of methane emission from ruminants is an important global issue due to its contribution to greenhouse gas with carbon dioxide. Methane is generated in the rumen by methanogens (archaea) that utilize metabolic hydrogen ($H_2$) to reduce carbon dioxide, and is a significant electron sink in the rumen ecosystem. Therefore, the competition for hydrogen used for methanogenesis with alternative reductions of rumen microbes should be an effective option to reduce rumen methanogenesis. Some methanogens parasitically survive on the surface of ciliate protozoa, so that defaunation or decrease in protozoa number might contribute to abate methanogenesis. The most important issue for mitigation of rumen methanogenesis with manipulators is to secure safety for animals and their products and the environment. In this respect, prophylactic effects of probiotics, prebiotics and miscellaneous compounds to mitigate rumen methanogenesis have been developed instead of antibiotics, ionophores such as monensin, and lasalocid in Japan. Nitrate suppresses rumen methanogenesis by its reducing reaction in the rumen. However, excess intake of nitrate causes intoxication due to nitrite accumulation, which induces methemoglobinemia. The nitrite accumulation is attributed to a relatively higher rate of nitrate reduction to nitrite than nitrite to ammonia via nitroxyl and hydroxylamine. The in vitro and in vivo trials have been conducted to clarify the prophylactic effects of L-cysteine, some strains of lactic acid bacteria and yeast and/or ${\beta}$1-4 galactooligosaccharide on nitrate-nitrite intoxication and methanogenesis. The administration of nitrate with ${\beta}$1-4 galacto-oligosaccharide, Candida kefyr, and Lactococcus lactis subsp. lactis were suggested to possibly control rumen methanogenesis and prevent nitrite formation in the rumen. For prebiotics, nisin which is a bacteriocin produced by Lactococcus lactis subsp. lactis has been demonstrated to abate rumen methanogenesis in the same manner as monensin. A protein resistant anti-microbe (PRA) has been isolated from Lactobacillus plantarum as a manipulator to mitigate rumen methanogenesis. Recently, hydrogen peroxide was identified as a part of the manipulating effect of PRA on rumen methanogenesis. The suppressing effects of secondary metabolites from plants such as saponin and tannin on rumen methanogenesis have been examined. Especially, yucca schidigera extract, sarsaponin (steroidal glycosides), can suppress rumen methanogenesis thereby improving protein utilization efficiency. The cashew nutshell liquid (CNSL), or cashew shell oil, which is a natural resin found in the honeycomb structure of the cashew nutshell has been found to mitigate rumen methanogenesis. In an attempt to seek manipulators in the section on methane belching from ruminants, the arrangement of an inventory of mitigation technologies available for the Clean Development Mechanism (CDM) and Joint Implementation (JI) in the Kyoto mechanism has been advancing to target ruminant livestock in Asian and Pacific regions.

Effect of γ-Aminobutyric Acid (GABA) Producing Bacteria on In vitro Rumen Fermentation, Biogenic Amine Production and Anti-oxidation Using Corn Meal as Substrate

  • Ku, Bum Seung;Mamuad, Lovelia L.;Kim, Seon-Ho;Jeong, Chang Dae;Soriano, Alvin P.;Lee, Ho-Il;Nam, Ki-Chang;Ha, Jong K.;Lee, Sang Suk
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.6
    • /
    • pp.804-811
    • /
    • 2013
  • The effects and significance of ${\gamma}$-amino butyric acid (GABA) producing bacteria (GPB) on in vitro rumen fermentation and reduction of biogenic amines (histamine, methylamine, ethylamine, and tyramine) using corn meal as a substrate were determined. Ruminal samples collected from ruminally fistulated Holstein cows served as inoculum and corn was used as substrate at 2% dry matter (DM). Different inclusion rates of GPB and GABA were evaluated. After incubation, addition of GPB had no significant effect on in vitro fermentation pH and total gas production, but significantly increased the ammonia nitrogen ($NH_3$-N) concentration and reduced the total biogenic amines production (p<0.05). Furthermore, antioxidation activity was improved as indicated by the significantly higher concentration of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) among treated samples when compared to the control (p<0.05). Additionally, 0.2% GPB was established as the optimum inclusion level. Taken together, these results suggest the potential of utilizing GPB as feed additives to improve growth performance in ruminants by reducing biogenic amines and increasing anti-oxidation.

The Effects of Different Copper (Inorganic and Organic) and Energy (Tallow and Glycerol) Sources on Growth Performance, Nutrient Digestibility, and Fecal Excretion Profiles in Growing Pigs

  • Huang, Y.;Yoo, J.S.;Kim, H.J.;Wang, Y.;Chen, Y.J.;Cho, J.H.;Kim, I.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.5
    • /
    • pp.573-579
    • /
    • 2010
  • This study was conducted to determine the effects of different copper (inorganic and organic) and energy (tallow and glycerol) sources on growth performance, nutrient digestibility, gas emission, diarrhea incidence, and fecal copper concentration in growing pigs by using a 2${\times}$2 factorial design. In this trial, 96 pigs (63 d of age) were employed, with an average initial weight of 28.36${\pm}$1.14 kg. The dietary treatments were i) basal diet with 134 ppm copper (Korea recommendation) as $CuSO_4$+tallow; ii) basal diet with 134 ppm Cu as $CuSO_4$+glycerol; iii) basal diet with 134 ppm copper as CuMet+tallow; and iv) basal diet with 134 ppm copper as CuMet+ glycerol. Throughout the entire experimental period, no differences were noted among treatment groups with regard to the magnitude of improvement in ADG (average daily gain), ADFI (average daily feed intake) and G/F (gain:feed) ratios. The nitrogen (N) digestibility of pigs fed on diets containing organic copper was improved as compared with that observed in pigs fed on diets containing inorganic copper (p<0.05). An interaction of copper${\times}$energy was observed in the context of both nitrogen (p<0.05) and energy (p<0.01) digestibility. Ammonia emissions were significantly lower in the organic copper-added treatment groups than in the inorganic copperadded treatment groups (p<0.05). Mercaptan and hydrogen sulfide emissions were reduced via the addition of glycerol (p<0.05). No significant effects of copper or energy source, or their interaction, were observed in reference to diarrhea appearance and incidence throughout the entirety of the experimental period. The copper concentration in the feces was significantly lower in the organic copper source treatment group than was observed in the inorganic copper source treatment group (p<0.05). The results of this experiment show that organic copper substituted for inorganic copper in the diet results in a decreased fecal copper excretion, but exerts no effect on performance. The different energy (tallow and glycerol) sources interact with different copper sources and thus influence nutrient digestibility. Glycerol supplementation may reduce the concentrations of odorous sulfuric compounds with different Cu sources.

Effects of purified lignin on in vitro rumen metabolism and growth performance of feedlot cattle

  • Wang, Yuxi;McAllister, Tim A.;Lora, Jairo H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.3
    • /
    • pp.392-399
    • /
    • 2017
  • Objective: The objectives were to assess the effects of purified lignin from wheat straw (sodium hydroxide dehydrated lignin; SHDL) on in vitro ruminal fermentation and on the growth performance of feedlot cattle. Methods: In vitro experiments were conducted by incubating a timothy-alfalfa (50:50) forage mixture (48 h) and barley grain (24 h) with 0, 0.25, 0.5, 1.0, and 2.0 mg/mL of rumen fluid (equivalent to 0, 2, 4, 8, and 16 g SHDL/kg diet). Productions of $CH_4$ and total gas, volatile fatty acids, ammonia, dry matter (DM) disappearance (DMD) and digestion of neutral detergent fiber (NDF) or starch were measured. Sixty Hereford-Angus cross weaned steer calves were individually fed a typical barley silage-barley grain based total mixed ration and supplemented with SHDL at 0, 4, 8, and 16 g/kg DM for 70 (growing), 28 (transition), and 121 d (finishing) period. Cattle were slaughtered at the end of the experiment and carcass traits were assessed. Results: With forage, SHDL linearly (p<0.001) reduced 48-h in vitro DMD from 54.9% to 39.2%, NDF disappearance from 34.1% to 18.6% and the acetate: propionate ratio from 2.56 to 2.41, but linearly (p<0.001) increased $CH_4$ production from 9.5 to 12.4 mL/100 mg DMD. With barley grain, SHDL linearly increased (p<0.001) 24-h DMD from74.6% to 84.5%, but linearly (p<0.001) reduced $CH_4$ production from 5.6 to 4.2 mL/100 mg DMD and $NH_3$ accumulation from 9.15 to $4.49{\mu}mol/mL$. Supplementation of SHDL did not affect growth, but tended (p = 0.10) to linearly reduce feed intake, and quadratically increased (p = 0.059) feed efficiency during the finishing period. Addition of SHDL also tended (p = 0.098) to linearly increase the saleable meat yield of the carcass from 52.5% to 55.7%. Conclusion: Purified lignin used as feed additive has potential to improve feed efficiency for finishing feedlot cattle and carcass quality.

Effects of Dietary Glycine Betaine on the Growth Performance in Pigs (Glycine betaine 첨가가 돼지의 생산성에 미치는 영향)

  • Kwak, S.C.;Kim, J.H.;Ha, Y.J.;Lee, J.I.;Lee, J.R.;Jung, J.D.;Lee, J.D.;Park, G.B.;Ko, Y.D.
    • Journal of Animal Science and Technology
    • /
    • v.47 no.2
    • /
    • pp.205-220
    • /
    • 2005
  • This study was conducted to investigate the effect of the addition of glycine betaine to the diet on growth performance in pigs. A total of 400 pigs were divided into 4 feeding stages(Growing I: 23.10 $\pm$ 1.43, Growing II: 37.69$\pm$ 1.62, Finishing I: 66.51 $\pm$3.44 and Finishing II: 90.42$\pm$ 2.17 kg of initial body weight) then each feeding stage was divided into 4 treatment groups(Control: 0 0/0, Tl : 0.2 0/0, T2: 0.4% and T3 : 0.6 % of glycine betaine, respectively). The average daily gain and feed efficiency of T2 and T3 were significantly increased(p< 0.05) by dietary glycine betaine in stage I, 2 and 3. This result indicates that dietary glycine betaine could influence the pig growth performance. In feeding stage 4, the average daily gain and feed efficiency were significantly increased in 0.4% glycine betaine feeding group compared with other dietary groups(p < 0.05). Results suggest that feeding the pigs 0.4 % glycine betaine could be the most efficient dietary level. Crude protein, ether extract and crude ash digestibilities of 0.4% glycine betaine fed group were significantly increased compared with those of control group(p < 0.05). However, no significant difference was found in nutrient digestibilities among glycine betaine fed groups. Apparent faecal amino acid digestibilities of 0.4% glycine betaine fed group were more significantly higher than that of control group. The 0.4% glycine betaine fed group was significantly increased in apparent faecal amino acid digestibility compared with those of other glycine betaine fed group. No significant difference was shown in amount of microflora population between control and glycine betaine fed groups. Ammonia and hydrogen sulfide gas emission were significantly decreased in 0.4% glycine betaine feeding group compared with other dietary groups(p < 0.05).

Leachate Treatment using Intermittently Aerated BAC-Fluidizing Bed (간헐폭기 생물활성탄 유동상에 의한 매립지침출수 처리)

  • Kim, Kyu Yeon;Lee, Dong Hoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.13 no.4
    • /
    • pp.136-147
    • /
    • 2005
  • Leachate from landfill sites contains high organics, chloride and ammonium nitrogen in concentration which might be potentially major pollutants to surface and groundwater environment. Most of landfill leachate treatment plants in Korea consist of biological processes to remove BOD and nitrogen. However, the efficiencies of refractory organics removal, nitrification and denitrification have not met frequently the national effluent regulation of wastewater treatment facility, especially in winter season. Simultaneous removal of organics and nitrogen from leachate is strongly necessitated to meet the national regulation on effluents from leachate treatment facilities. The intermittently aerated biological activated carbon fluidized bed(IABACFB) process was applied to treat real landfill leachates containing refractory organics and high concentration of ammonium nitrogen. The IABACFB reactor consisted of a single bed in which BAC fluidizing and an aerating column. The fluidized bed is intermittently aerated through the blower located at the aerating column. Experiments were performed to evaluate the applicability of Intermittently Aerated BACFB for simultaneous removal of refractory organic carbon and ammonium nitrogen of leachate. Organics and ammonia nitrogen($NH{_4}{^+}-N$)are oxidized during the aerobic stage, and nitrite-nitrate nitrogen($NO{_x}{^-}-N$) are removed to nitrogen gas through denitrification reaction during anoxic state. The IABACFB reactor condition reached a steady state within 40 days since the reactors had been operated. The blowing mode of 60 min.-On/60 min.-OFF is more compatible to remove TOC and ($NH{_4}{^+}-N$) operated. The blowing mode of 60 min.-On/60 min.-OFF is more compatible to remove TOC and ($NH{_4}{^+}-N$) simultaneously than the mode of 30 min.-On/90 min.-OFF. The average removal efficiencies of TOC, the refractory organic carbon, and the average efficiencies of nitrification and denitrification were 90%, 75%, 80%, 95%, respectively.

  • PDF

Effect of Waste Sludge of Fermentation By-Product on the Growth of Young Radish and Chemical Properties of Soil (발효부산물 오니의 시용이 열무 생장과 토양화학성에 미치는 영향)

  • Hong, Soon-Dal;Seok, Yeong-Seon;Sa, Tong-Min
    • Korean Journal of Environmental Agriculture
    • /
    • v.20 no.1
    • /
    • pp.8-14
    • /
    • 2001
  • To investigate the effects of waste sludge from antibiotic fermentation on the growth of young radish and chemical properties of soil, five levels of fertilizer, control (recommended fertilizer, $N-P_2O_5-K_2O=160-59-104$ kg/ha), AS(control + sludge 1,000 kg/ha), AC(control + conventional compost 1,000 kg/ha), SNS(control - subtracting 30% N of sludge + sludge 1,000 kg/ha) and SNC(control - subtracting 30% N of conventional compost + conventional compost 1,000 kg/ha) were applied and radish was grown twice with same treatments on May and August in 1998. Germination rate and early growth of young radish grown with AS and SNS were lower than those grown in control and with AC, SNC. This negative effects by adding the sludge in the early growth seemed to be caused by damage of ammonia gas released during degradation of the sludge in soil. However, yield of young radish showed no significant difference among all the treatments including the AS and SNS at the 1st and 2nd experiment, and these suggested that the latter half of growth of young radish was accelerated by adding the sludge. Contents of T-N in young radish and inorganic N in soil showed a tendency to increase by adding the sludge while antibiotic substance, cephalosporin-C, was not detected in plant material and soils after harvest of young radish in both experiments. Consequently, waste sludge from antibiotic fermentation, which contains high levels of organic matter and nitrogen could be used as an useful resource in agriculture.

  • PDF

Effects of Plant-origin Biological Active Materials on the Activities of Pathogenic Microbes and Rumen Microbes (식물유래 생리활성물질의 병원성 미생물 및 반추위 미생물 활성에 대한 영향)

  • 옥지운;이상민;임정화;이신자;문여황;이성실
    • Journal of Animal Science and Technology
    • /
    • v.48 no.5
    • /
    • pp.709-718
    • /
    • 2006
  • In order to know the effects of Garlic, Scallion, Flavonoid, Urushiol, Anthocyanidin and Bio-MOS?? on pathogenic microbes and rumen anaerobic microbes, the growth rate of pathogens (including Escherichia coli O157, Salmonella paratyphi, Listeria monocytogenes and Staphylococcus aureus) and in vitro rumen microbial growth, gas production, ammonia concentration, carboxymethylcellulase(CMCase) activity, and microbial populations were investigated.The growth of pathogens was inhibited by supplementation of 0.1% Flavonoid, Scallion or Bio-MOS?? as biological active materials. And Scallion and Flavonoid had powerful antimicrobial properties on the pathogens applied in paper disc method.Although few effects by biological active materials disappeared in rumen fermentation in vitro, CMCase activity removed with supplementation of 1% of Flavonoid which had antimicrobial property in paper disc method. Scallion, having powerful antimicrobial property on pathogens and no inhibiting on rumen fermentation, might be a source in development of natural antimicrobial agent for ruminants.