• 제목/요약/키워드: Aluminum and $Al_2O_3$ film

검색결과 122건 처리시간 0.026초

Atomic Layer Deposition of Al2O3 Thin Films Using Dimethyl Aluminum sec-Butoxide and H2O Molecules

  • Jang, Byeonghyeon;Kim, Soo-Hyun
    • 한국재료학회지
    • /
    • 제26권8호
    • /
    • pp.430-437
    • /
    • 2016
  • Aluminum oxide ($Al_2O_3$) thin films were grown by atomic layer deposition (ALD) using a new Al metalorganic precursor, dimethyl aluminum sec-butoxide ($C_{12}H_{30}Al_2O_2$), and water vapor ($H_2O$) as the reactant at deposition temperatures ranging from 150 to $300^{\circ}C$. The ALD process showed typical self-limited film growth with precursor and reactant pulsing time at $250^{\circ}C$; the growth rate was 0.095 nm/cycle, with no incubation cycle. This is relatively lower and more controllable than the growth rate in the typical $ALD-Al_2O_3$ process, which uses trimethyl aluminum (TMA) and shows a growth rate of 0.11 nm/cycle. The as-deposited $ALD-Al_2O_3$ film was amorphous; X-ray diffraction and transmission electron microscopy confirmed that its amorphous state was maintained even after annealing at $1000^{\circ}C$. The refractive index of the $ALD-Al_2O_3$ films ranged from 1.45 to 1.67; these values were dependent on the deposition temperature. X-ray photoelectron spectroscopy showed that the $ALD-Al_2O_3$ films deposited at $250^{\circ}C$ were stoichiometric, with no carbon impurity. The step coverage of the $ALD-Al_2O_3$ film was perfect, at approximately 100%, at the dual trench structure, with an aspect ratio of approximately 6.3 (top opening size of 40 nm). With capacitance-voltage measurements of the $Al/ALD-Al_2O_3/p-Si$ structure, the dielectric constant of the $ALD-Al_2O_3$ films deposited at $250^{\circ}C$ was determined to be ~8.1, with a leakage current density on the order of $10^{-8}A/cm^2$ at 1 V.

양극산화된 알루미늄의 적외선 복사특성 연구 (A Study on the Infrared Radiation Properties of Anodized Aluminum)

  • 강병철;최정진;김기호
    • 한국표면공학회지
    • /
    • 제35권3호
    • /
    • pp.149-157
    • /
    • 2002
  • Spectral emissivity depends on the surface conditions of the materials. The mechanisms that affect the spectral emissivity in anodic oxide films on aluminum were investigated. The aluminum specimens were anodized in a sulfuric acid solution and the thickness of the resulting oxide film formed changed with the anodizing time. FT-IR spectrum analysis identified the anodic oxide film as boehmite ($Al_2$$O_3$.$H_2$O). Both the infrared emisivity and reflectivity of the anodized aluminum were affected by the structure of the anodic oxide film because Al-OH and Al-O-Al have a pronounced absorption band in the infrared region of the spectrum. The presence of an anodic oxide film on aluminum caused a rapid drop in the infrared reflectivity. An aluminum surface in the clean state had an emissivity of approximately 0.2. However, the infrared emissivity rapidly increased to 0.91 as the thickness of the anodic oxide film increased.

Borate 완충용액에서 알루미늄의 산화피막의 생성과정과 전기적 성질에 대한 대기의 영향 (Atmospheric Effects on Growth Kinetics and Electronic Properties of Passive Film of Aluminum in Borate Buffer Solution)

  • 김연규
    • 대한화학회지
    • /
    • 제60권3호
    • /
    • pp.169-176
    • /
    • 2016
  • Borate 완충용액에서 Al의 부식과 부동화에 관하여 변전위법, 대 시간 전류법 그리고 다중 주파수 전기화학적 임피던스 측정법으로 조사하였다. 공기 또는 산소의 영향은 환원과정에 영향을 주었지만 산화반응에는 영향을 미치지 못 하는 것으로 보인다. 부동화 영역에서 생성되는 피막의 전기적 성질은 Mott-Schottky 식이 적용되는 n-type 반도체 성질을 보였다. 낮은 전극전위에서 생성되는 Al의 산화피막은 Al(OH)3로 충분한 부동화 효과를 보이지 못하나, 전극전위가 증가하면서 Al2O3로 변하였다. Al2O3 피막은 “전기장에 의한-이온의 이동” 과정에 의하여 성장하는 것으로 보인다.

졸-겔법으로 제조된 ZrO2/Al막의 열처리 온도에 따른 양극산화 특성 (Annealing Temperature Dependence on Anodizing Properties of ZrO2/Al Films Prepared by Sol-gel Method)

  • 박상식;이병택
    • 한국세라믹학회지
    • /
    • 제40권9호
    • /
    • pp.909-915
    • /
    • 2003
  • 알루미늄 전해캐패시터에서 양극산화막은 유전체로서 중요한 역할을 하는데 높은 캐패시턴스를 얻기 위하여 알루미늄 위에 ZrO$_2$ 막을 졸-겔법으로 코팅하고 양극산화시킨 후 이들이 특성을 연구하였다. 코팅과 건조를 4~10회 반복하여 제조된 막들을 300~$600^{\circ}C$에서 열처리하였으며 ZrO$_2$/Al 막을 양극산화 시킨 후 ZrO$_2$/Al-ZrO$_{x}$ /Al$_2$O$_3$의 세층이 알루미늄 기판 위에 형성되었고, $Al_2$O$_3$ 층의 두께는 열처리 온도가 증가함에 따라 ZrO$_2$ 막의 치밀화로 인해 감소하였다. ZrO$_2$ 막은 30$0^{\circ}C$에서도 미세한 결정질 구조를 가지고 성장하였으며, 열처리와 양극산화 후 나타나는 알루미늄박의 캐패시턴스는 저온에서 열처리한 박이 큰 값을 보이는데 이는 ZrO$_2$ 막 자체의 캐패시턴스가 큰 것이 기인한다. 400V로 양극산화한 후 ZrO 막을 코팅한 알루미늄박의 캐패시턴스는 코팅하지 않은 경우 보다 약 3배 정도의 큰 값을 보여 복합산화물층을 갖는 알루미늄박은 알루미늄 전해캐패시터에의 적용가능성을 보였다.

Preparation of Al2O3 Thin Films by Atomic Layer Deposition Using Dimethylaluminum Isopropoxide and Water and Their Reaction Mechanisms

  • An, Ki-Seok;Cho, Won-Tae;Sung, Ki-Whan;Lee, Sun-Sook;Kim, Yun-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • 제24권11호
    • /
    • pp.1659-1663
    • /
    • 2003
  • $Al_2O_3$ thin films were grown on H-terminated Si(001) substrates using dimethylaluminum isopropoxide [DMAl: $(CH_3)_2AlOCH(CH_3)_2$], as a new Al precursor, and water by atomic layer deposition (ALD). The selflimiting ALD process by alternate surface reactions of DMAI and $H_2O$ was confirmed from measured thicknesses of the aluminum oxide films as functions of the DMAI pulse time and the number of DMAI-$H_2O$ cycles. Under optimal reaction conditions, a growth rate of ~1.06 ${\AA}$ per ALD cycle was achieved at the substrate temperature of $150\;^{\circ}C$. From a mass spectrometric study of the DMAI-$D_2O$ ALD process, it was determined that the overall binary reaction for the deposition of $Al_2O_3\;[2\;(CH_3)_2AlOCH(CH_3)_2\;+\;3\;H_2O\;{\rightarrow}\;Al_2O_3\;+\;4\;CH_4\;+\;2\;HOCH(CH_3)_2]$can be separated into the following two half-reactions: where the asterisks designate the surface species. Growth of stoichiometric $Al_2O_3$ thin films with carbon incorporation less than 1.5 atomic % was confirmed by depth profiling Auger electron spectroscopy. Atomic force microscopy images show atomically flat and uniform surfaces. X-ray photoelectron spectroscopy and cross-sectional high resolution transmission electron microscopy of an $Al_2O_3$ film indicate that there is no distinguishable interfacial Si oxide layer except that a very thin layer of aluminum silicate may have been formed between the $Al_2O_3$ film and the Si substrate. C-V measurements of an $Al_2O_3$ film showed capacitance values comparable to previously reported values.

원자층 증착에 있어서 아르곤 펄스 시간이 Al2O3 박막에 미치는 효과 (Effects on the Al2O3 Thin Film by the Ar Pulse Time in the Atomic Layer Deposition)

  • 김기락;조의식;권상직
    • 반도체디스플레이기술학회지
    • /
    • 제20권4호
    • /
    • pp.157-160
    • /
    • 2021
  • As an insulator for a thin film transistor(TFT) and an encapsulation material of organic light emitting diode(OLED), aluminum oxide (Al2O3) has been widely studied using several technologies. Especially, in spite of low deposition rate, atomic layer deposition (ALD) has been used as a process method of Al2O3 because of its low process temperature and self-limiting reaction. In the Al2O3 deposition by ALD method, Ar Purge had some crucial effects on the film properties. After reaction gas is injected as a formation of pulse, an inert argon(Ar) purge gas is injected for gas desorption. Therefore, the process parameter of Ar purge gas has an influence on the ALD deposited film quality. In this study, Al2O3 was deposited on glass substrate at a different Ar purge time and its structural characteristics were investigated and analyzed. From the results, the growth rate of Al2O3 was decreased as the Ar purge time increases. The surface roughness was also reduced with increasing Ar purge time. In order to obtain the high quality Al2O3 film, it was known that Ar purge times longer than 15 sec was necessary resulting in the self-limiting reaction.

알루미늄 에치피트에 ZrO2 막의 졸-겔 코팅 및 양극산화 특성 (Sol-gel Coating of ZrO2 Film in Aluminium Etch Pit and Anodizing Properties)

  • ;박상식
    • 한국재료학회지
    • /
    • 제24권5호
    • /
    • pp.259-265
    • /
    • 2014
  • $ZrO_2$ films were coated on aluminum etching foil by the sol-gel method to apply $ZrO_2$ as a dielectric material in an aluminum(Al) electrolytic capacitor. $ZrO_2$ films annealed above $450^{\circ}C$ appeared to have a tetragonal structure. The withdrawal speed during dip-coating, and the annealing temperature, influenced crack-growth in the films. The $ZrO_2$ films annealed at $500^{\circ}C$ exhibited a dielectric constant of 33 at 1 kHz. Also, uniform $ZrO_2$ tunnels formed in Al etch-pits $1{\mu}m$ in diameter. However, $ZrO_2$ film of 100-200 nm thickness showed the withstanding voltage of 15 V, which was unsuitable for a high-voltage capacitor. In order to improve the withstanding voltage, $ZrO_2$-coated Al etching foils were anodized at 300 V. After being anodized, the $Al_2O_3$ film grew in the directions of both the Al-metal matrix and the $ZrO_2$ film, and the $ZrO_2$-coated Al foil showed a withstanding voltage of 300 V. However, the capacitance of the $ZrO_2$-coated Al foil exhibited only a small increase because the thickness of the $Al_2O_3$ film was 4-5 times thicker than that of $ZrO_2$ film.

Solution-Processed Al2O3 확산층을 이용한 Sputtering IZO Thin Film Transistor의 안정성 향상 (Improved Stability Sputtered IZO Thin Film Transistor Using Solution Processed Al2O3 Diffusion Layer)

  • 황남경;임유성;이정석;이세형;이문석
    • 한국전기전자재료학회논문지
    • /
    • 제31권5호
    • /
    • pp.273-277
    • /
    • 2018
  • This research introduces the sputtered IZO thin film transistor (TFT) with solution-processed $Al_2O_3$ diffusion layer. IZO is one of the most commonly used amorphous oxide semiconductor (AOS) TFT. However, most AOS TFTs have many defects that degrade performance. Especially oxygen vacancy in the active layer. In previous research, aluminum was used as a carrier suppressor by binding the oxygen vacancy and making a strong bond with oxygen atoms. In this paper, we use a solution-processed $Al_2O_3$ diffusion layer to fabricate stable IZO TFTs. A double-layer solution-processed $Al_2O_3$-sputtered IZO TFT showed better performance and stability, compared to normal sputtered IZO TFT.

H2SO4 수용액에서의 주조용 알루미늄 합금들의 부식거동 (Corrosion Behavior of Casting Aluminum Alloys in H2SO4 Solution)

  • 우상현;손영진;이병우
    • 동력기계공학회지
    • /
    • 제20권3호
    • /
    • pp.17-21
    • /
    • 2016
  • The corrosion behavior of aluminum alloys in the $H_2SO_4$ solution was investigated based on potentiodynamic techniques. Electrochemical properties, such as corrosion potential($E_c$), passive potential($E_p$), corrosion current density($I_c$), corrosion rate(mpy), of Al-Mg-Si, Al-Cu-Si and Al-Si alloys were characterized at room temperature. Passive aluminum oxide film, which including $Al_2(SO_4)_3$ and $3Al_2O_34SO_38H_2O$, were uniformly formed on the surface via the reaction of Al with $SO{_3}^{2-}$ or $SO{_4}^{2-}$ ions in the $H_2SO_4$ solution and the dependence of the corrosion behavior on the alloying element was discussed. The selective leaching of alloy element increased with increasing Cu content in the aluminum alloys.

결정질 실리콘 태양전지를 위한 PA-ALD Al2O3 막의 패시베이션 효과 향상 연구 (Improvement on the Passivation Effect of PA-ALD Al2O3 Layer Deposited by PA-ALD in Crystalline Silicon Solar Cells)

  • 송세영;강민구;송희은;장효식
    • 한국전기전자재료학회논문지
    • /
    • 제26권10호
    • /
    • pp.754-759
    • /
    • 2013
  • Aluminum oxide($Al_2O_3$) film deposited by atomic layer deposition (ALD) is known to supply excellent surface passivation properties on crystalline Si surfaces. Since $Al_2O_3$ has fixed negative charge, it forms effective surface passivation by field effect passivation on the rear side in p-type silicon solar cell. However, $Al_2O_3$ layer formed by ALD process needs very long process time, which is not applicable in mass production of silicon solar cells. In this paper, plasma-assisted ALD(PA-ALD) was applied to form $Al_2O_3$ to reduce the process time. $Al_2O_3$ synthesized by ALD on c-Si (100) wafers contains a very thin interfacial $SiO_2$ layer, which was confirmed by FTIR and TEM. To improve passivation quality of $Al_2O_3$ layer, the deposition temperature was changed in range of $150{\sim}350^{\circ}C$, then the annealing temperature and time were varied. As a result, the silicon wafer with aluminum oxide film formed in $250^{\circ}C$, $400^{\circ}C$ and 10 min for the deposition temperature, the annealing temperature and time, respectively, showed the best lifetime of 1.6ms. We also observed blistering with nanometer size during firing of $Al_2O_3$ deposited on p-type silicon.