• Title/Summary/Keyword: Alternative material

Search Result 1,467, Processing Time 0.028 seconds

Study on CO2 Emission Reduction Effects of Using Waste Cementitious Powder as an Alternative Raw Material

  • Park, Dong-Cheon;Kwon, Eun-Hee;Hwang, Jong-Uk;Ahn, Jae-Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.2
    • /
    • pp.187-194
    • /
    • 2014
  • With environmental regulations continuously being strengthened internationally the need to control environmental pollution and environmental load is emerging in Korea. The purpose of this study is to seek methods or using waste cementitious powder as an alternative raw material for limestone through the optimization of raw material and to quantitatively analyze the resulting reduction of $CO_2$ emission in order to contribute to solving the issue of waste, which is the biggest issue in relation to construction and global warming. The results of the study, show that waste cementitious powder can be used as an alternative raw material for limestone at OPC level, but it was also found that mixing fine aggregate cementitious powder into waste cementitious powder significantly affected the substitution rate for limestone with waste cementitious powder and the reduction of greenhouse gas. In particular, when fine aggregate cementitious powder was used at a rate of 0~20%, the substitution rate for limestone and the reduction in the rate of greenhouse gas emission was significantly reduced. It is thought that a technique to efficiently separate and discharge the fine aggregate cementitious powder mixed in waste cementitious powder needs to be developed in the future.

In Situ Bio-barrier Formation using Bacteria/Fungi-Soil Mixture (Bacteria/Fungi 혼합토를 이용한 현장 Bio-barrier 형성)

  • 김건하;송영우;구동영
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.489-495
    • /
    • 2000
  • When microorganisms such as bacteria and fungi are injected into porous medium such as soils along with appropriate substrate and nutrients, biomass retained in the soil pore. Soil pore size and shape are varied from the initial condition as a result of biofilm formation, which make hydraulic conductivity reduced. In this research, hydraulic conductivity reduction was measured after microorganism are inoculated and cultured with synthetic substrates and nutrients. Biomass-soil mixture was evaluated its applicability to the field condition as an alternative liner material in landfill by measuring hydraulic conductivity change after repetitive freeze-thaw cycles.

  • PDF

Hexagonal Material Flow Pattern for Next Generation Semiconductor Fabrication (차세대 반도체 펩을 위한 육각형 물류 구조의 설계)

  • Chung, Jae-Woo;Suh, Jung-Dae
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.36 no.1
    • /
    • pp.42-51
    • /
    • 2010
  • The semiconductor industry is highly capital and technology intensive. Technology advancement on circuit design and process improvement requires chip makers continuously to invest a new fabrication facility that costs more than 3 billion US dollars. Especially major semiconductor companies recently started to discuss 450mm fabrication substituting existing 300mm fabrication of which facilities were initiated to build in 1998. If the plan is consolidated, the yield of 450mm facility would be more than doubled compared to existing 300mm facility. In steps of this important investment, facility layout has been acknowledged as one of the most important factors to be competitive in the market. This research proposes a new concept of semiconductor facility layout using hexagonal floor plan and its compatible material flow pattern. The main objective of this proposal is to improve the productivity of the unified layout that has been popularly used to build existing facilities. In this research, practical characteristics of the semiconductor fabrication are taken into account to develop a new layout alternative based on the analysis of Chung and Tanchoco (2009). The performance of the proposed layout alternative is analyzed using computer simulation and the results show that the new layout alternative outperforms the existing layout alternative, unified layout. However, a few questions on space efficiency to the new alternative were raised in communication with industry practitioners. These questions are left for a future study.

Investigation on the Effectiveness of Aqueous Carbonated Lime in Producing an Alternative Cementitious Material

  • Jo, Byung-Wan;Chakraborty, Sumit;Choi, Ji Sun;Jo, Jun Ho
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.1
    • /
    • pp.15-28
    • /
    • 2016
  • With the aim to reduce the atmospheric $CO_2$, utilization of the carbonated lime produced from the aqueous carbonation reaction for the synthesis of a cementitious material would be a promising approach. The present investigation deals with the aqueous carbonation of slaked lime, followed by hydrothermal synthesis of a cementitious material utilizing the carbonated lime, silica fume, and hydrated alumina. In this study, the aqueous carbonation reaction was performed under four different conditions. The TGA, FESEM, and XRD analysis of the carbonated product obtained from the four different reaction conditions was performed to evaluate the efficacy of the reaction conditions used for the production of the carbonated lime. Additionally, the performance of the cementitious material was verified analyzing the physical characteristics, mechanical property and setting time. Based on the results, it is demonstrated that the material produced by the hydrothermal method possesses the cementing ability. Additionally, it is revealed that the mortar prepared using the alternative cementitious material yields $33.8{\pm}1.3MPa$ compressive strength. Finally, a plausible reaction scheme has been proposed to explain the overall performances of the aqueous carbonation as well as the hydrothermal synthesis of the cementitious material.

The Utilization of Domestic Fly Ash as a Cement Raw Material (시멘트 원료로 국내산 석탄재의 이용 가능성)

  • Lee, Yoon-Cheol;Lee, Se-Yong;Min, Kyung-So;Lee, Chang-Hyun;Park, Tae-Gyun;Yoo, Dong-Woo
    • Korean Journal of Materials Research
    • /
    • v.32 no.1
    • /
    • pp.23-29
    • /
    • 2022
  • Fly ash is a by-product of coal fired electrical power plants and used as a material for cement and concrete; particularly, imported fly ash is mainly applied for cement production. Main objectives of this article are to replace domestic fly ash with an imported source. To verify the possibility of domestic fly ash as a material for cement from the aspect of chemical composition and physical properties, we manufactured various kinds of cement, such as using only natural raw material, shale, and partial replacement with domestic and imported fly ash. When we used the domestic and imported fly ash, there were no specific problems in terms of clinker synthesis or cement manufacturing in relation to the natural material, shale. In conclusion, domestic fly ash has been confirmed as an alternative raw material for cement because 7 days and 28 days compressive strength values were better than those of reference cement using natural raw material, on top of the process issue.

A Study on Alternative Backfill Material for Pre-insulated Pipe through the Laboratory Tests (실내시험을 통한 이중보온관 되메움 대체재료에 관한 연구)

  • Choi, Bong-Hyuck;Kim, Jin-Man;Yoo, Han-Kyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.9
    • /
    • pp.5-11
    • /
    • 2011
  • This paper recommends the alternative back-fill material for the pre-insulated pipe based on the results of tests performed using different kinds of backfill material. In this study, laboratory tests were preformed to determine the behavior of the pre-insulated pipe caused by variation on grain size distribution, friction characteristics and earth pressure characteristics of different types of backfill material. Two types of natural sand (fine-grained and coarse-grained sand) and crushed sand, and two types of gravel (10mm, 20mm) were used as backfill material in the laboratory tests. The laboratory test results were analyzed and compared with the pre-insulated pipe backfilled with the standard medium-grained sand. Based on the evaluation and comparison of laboratory test results, it was determined that crushed sand is the most suitable back-fill material that can be used as an alternative for medium grained sand for pre-insulated pipes.

A Study on Alternative Backfill Material for Pre-insulated Pipe through the Field Tests (현장시험을 통한 이중보온관 되메움 대체재료에 관한 연구)

  • Choi, Bong-Hyuck;Kim, Jin-Man;Yoo, Han-Kyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.1C
    • /
    • pp.1-6
    • /
    • 2012
  • In this study, field tests were performed to evaluate the stability of pre-insulated pipe during the compaction operation and to recommend an alternative backfill material. Three types of natural sand (fine-grained and medium-grained, coarse-grained sand), crushed sand and two types of gravel (10 mm, 20 mm) were used as backfill material in the field tests. Field tests were performed to determine the behavior (earth-pressure and deformation, installation damage) of the pre-insulated pipe due to variation of different types of backfill material. Based on the evaluation and comparison of field test results, it was determined that crushed sand is the most suitable back-fill material that can be used as an alternative for medium grained sand for pre-insulated pipes with respect to the engineering behavior and material supply.

A Study on the Improvement and the Production State of Alternative Materials of Special Libraries for the Visually Disabled in Korea (국내 시각장애인도서관의 대체자료 제작현황 및 개선방안 연구)

  • Oh, Seonkyung
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.51 no.3
    • /
    • pp.215-246
    • /
    • 2017
  • Alternative materials for the visually disabled are very important factors for accessing and using information, dissolving the knowledge information gap, social participation and integration. Nevertheless, since alternative materials have been produced, until recently, even under the voluntary efforts of the braille library and the financial support of local governments, the scope of the materials is restricted to literary materials and hobby books, duplicated in title, and limited in format. In this study, we investigated and analyzed the cases of domestic and international library and related organizations' alternative material production and the current state and perception of alternative materials by applying the survey method to special libraries for the visually disabled and the visually disabled. Based on these results, we added suggestions for the improvement for alternative material production and utilization.

Topology optimization for thin plate on elastic foundations by using multi-material

  • Banh, Thien Thanh;Shin, Soomi;Lee, Dongkyu
    • Steel and Composite Structures
    • /
    • v.27 no.2
    • /
    • pp.177-184
    • /
    • 2018
  • This study contributes to evaluate multiphase topology optimization design of plate-like structures on elastic foundations by using classic plate theory. Multi-material optimal topology and shape are produced as an alternative to provide reasonable material assignments based on stress distributions. Multi-material topology optimization problem is solved through an alternative active-phase algorithm with Gauss-Seidel version as an optimization model of optimality criteria. Stiffness and adjoint sensitivity formulations linked to thin plate potential strain energy are derived in terms of multiphase design variables and Winkler-Pasternak parameters considering elastic foundation to apply to the current topology optimization. Numerical examples verify efficiency and diversity of the present topology optimization method of elastic thin plates depending on multiple materials and Winkler-Pasternak parameters with the same amount of volume fraction and total structural volume.

A Study on the alternative daily cover and envelop materials of PS Ball slag (PS Ball 풍쇄슬래그의 일일복토재 및 집배수재 재활용을 위한 연구)

  • Kim, Sang-Keun;Chung, Ha-Ik;Song, Bong-Jun;Chang, Won-Seok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1408-1411
    • /
    • 2005
  • The purposes of daily cover are to control odor and volatile organic compound emissions, to control litters, to mitigate rainfall infiltration. Under usual operation of landfill, the soil layer of 15cm thick is used for daily cover, but about $20{\sim}$25% of landfill capacity is consumed by daily cover volume. Considering our limited land and difficulty in getting landfill site, developing an alternative daily cover material which usually occupies much less volume than soil will be very significant. Also, if we can use waste material for alternative daily cover, we can get additional benefit of recycling waste.

  • PDF