DOI QR코드

DOI QR Code

Investigation on the Effectiveness of Aqueous Carbonated Lime in Producing an Alternative Cementitious Material

  • Jo, Byung-Wan (Department of Civil and Environmental Engineering, Hanyang University) ;
  • Chakraborty, Sumit (Department of Civil and Environmental Engineering, Hanyang University) ;
  • Choi, Ji Sun (Department of Civil and Environmental Engineering, Hanyang University) ;
  • Jo, Jun Ho (Department of Civil and Environmental Engineering, Hanyang University)
  • Received : 2015.09.03
  • Accepted : 2016.01.31
  • Published : 2016.03.30

Abstract

With the aim to reduce the atmospheric $CO_2$, utilization of the carbonated lime produced from the aqueous carbonation reaction for the synthesis of a cementitious material would be a promising approach. The present investigation deals with the aqueous carbonation of slaked lime, followed by hydrothermal synthesis of a cementitious material utilizing the carbonated lime, silica fume, and hydrated alumina. In this study, the aqueous carbonation reaction was performed under four different conditions. The TGA, FESEM, and XRD analysis of the carbonated product obtained from the four different reaction conditions was performed to evaluate the efficacy of the reaction conditions used for the production of the carbonated lime. Additionally, the performance of the cementitious material was verified analyzing the physical characteristics, mechanical property and setting time. Based on the results, it is demonstrated that the material produced by the hydrothermal method possesses the cementing ability. Additionally, it is revealed that the mortar prepared using the alternative cementitious material yields $33.8{\pm}1.3MPa$ compressive strength. Finally, a plausible reaction scheme has been proposed to explain the overall performances of the aqueous carbonation as well as the hydrothermal synthesis of the cementitious material.

Keywords

References

  1. Amato, I. (2013). Concrete solutions. Nature News, 494, 300-301. https://doi.org/10.1038/494300a
  2. Chakraborty, S., Kundu, S. P., Roy, A., Adhikari, B.,& Majumder, S. B. (2013). Effect of jute as fiber reinforcement controlling the hydration characteristics of cement matrix. Industrial and Engineering Chemistry Research, 52, 1252-1260. https://doi.org/10.1021/ie300607r
  3. Chen, Z. Y., O'Connor, W. K., & Gerdemann, S. J. (2006). Chemistry of aqueous mineral carbonation for carbon sequestration and explanation of experimental results. Environmental Progress & Sustainable Energy, 25(2), 161-166.
  4. Chindaprasirt, P., & Cao, T. (2015). Setting, segregation and bleeding of alkali-activated cement mortar and concrete binders. In F. P. Torgal, J. A. Labrincha, C. Leonelli, A. Palomo, & P. Chindaprasirt (Eds.), Handbook of alkaliactivated cements, mortars and concretes (pp. 113-131)., Woodhead Publishing series in Civil and Structural Engineering, No.: 54 Cambridge: Woodhead publishing.
  5. Chizmeshya, A. V. G., McKelvy, M. J., Marzke, R., Ito, N., Wolf, G., Bearat, H., et al. (2007) Investigating geological sequestration reaction processes under in situ process conditions. 32nd International Technical Conference on Coal Utilization & Fuel Systems, 441.
  6. Criado, M., Fernandez-Jimenez, A., & Palomo, A. (2010). Alkali activation of fly ash. Part III: effect of curing conditions on reaction and its graphical description. Fuel, 89, 3185-3192. https://doi.org/10.1016/j.fuel.2010.03.051
  7. Crowley, S. F. (2010). Mineralogical and chemical composition of international carbon and oxygen isotope calibration material NBS 19, and reference materials NBS 18, IAEACO-1 and IAEA-CO-8. Geostandards and Geoanalytical Research, 34(2), 193-206. https://doi.org/10.1111/j.1751-908X.2010.00037.x
  8. Dinakar, P., Sahoo, P. K., & Sriram, G. (2013). Effect of metakaolin content on the properties of high strength concrete. International Journal of Concrete Structures and Materials, 7(3), 215-223. https://doi.org/10.1007/s40069-013-0045-0
  9. Feely, R. A., Sabine, C. L., Lee, K., Berelson, W., Kleypas, J., Fabry, V. J., et al. (2004). Impact of anthropogenic $CO_2$ on the $CaCO_3$ system in the oceans. Science, 305, 362-366. https://doi.org/10.1126/science.1097329
  10. Galan, I., Andrade, C., Mora, P., & Sanjuan, M. A. (2010). Sequestration of $CO_2$ by concrete carbonation. Environmental Science and Technology, 44, 3181-3186. https://doi.org/10.1021/es903581d
  11. Gerdemann, S. J., O'Connor, W. K., Dahlin, D. C., Penner, L. R., & Rush, H. (2007). Ex-situ aqueous mineral carbonation. Environmental Science and Technology, 41, 2587-2593. https://doi.org/10.1021/es0619253
  12. Han, S. J., Yoo, M., Kim, D. W., & Wee, J. H. (2011). Carbon dioxide capture using calcium hydroxide aqueous solution as the absorbent. Energy & Fuels, 25, 3825-3834. https://doi.org/10.1021/ef200415p
  13. Hanchen, M., Prigiobbe, V., Baciocchi, R., & Mazzotti, M. (2008). Precipitation in the mg-carbonate system effects of temperature and $CO_2$ pressure. Chemical Engineering Science, 63, 1012-1028. https://doi.org/10.1016/j.ces.2007.09.052
  14. Huijgen, W. J. J., Comans, R. N. J. (2005). Carbon dioxide sequestration by mineral carbonation. Literature review update (2003-2004), ECN-C-05-022. Energy Research Centre of The Netherlands, Petten, Netherlands. Available at: http://www.ecn.nl/docs/library/report/2005/c05022.pdf. Accessed: 23 Dec 2014.
  15. Huijgen, W. J. J., Comans, R. N. J., & Witkamp, G. J. (2007). Cost evaluation of $CO_2$ sequestration by aqueous mineral carbonation. Energy Conversion and Management, 48, 1923-1935. https://doi.org/10.1016/j.enconman.2007.01.035
  16. Huijgen, W. J. J., Witcamp, G. J., & Comans, R. N. J. (2004). Mineral $CO_2$ sequestration in alkaline solid residues. Proceedings Materials of 7th International Conference on Greenhouse Gas Control Technologies (pp. 2415-2418) Vancouver, BC.
  17. Huijgen, W. J. J., Witkamp, G. J., & Comans, R. N. J. (2006). Mechanisms of aqueous wollastonite carbonation as a possible $CO_2$ sequestration process. Chemical Engineering Science, 61, 4242-4251. https://doi.org/10.1016/j.ces.2006.01.048
  18. Jacobsen, J., Rodrigues, M. S., Telling, M. T. F., Beraldo, A. L., Santos, S. F., Aldridge, L. P., et al. (2013). Nano-scale hydrogen-bond network improves the durability of greener cements. Scientific Reports, 3(2667), 1-6. doi: 10.1038/srep02667.
  19. Jeon, D., Jun, Y., Jeong, Y., & Oh, J. E. (2015). Microstructural and strength improvements through the use of $Na_2CO_3$ in a cementless $Ca(OH)_2$-activated Class F fly ash system. Cement and Concrete Research, 67, 215-225. https://doi.org/10.1016/j.cemconres.2014.10.001
  20. Jiao, J., Liu, X., Gao, W., Wang, C., Feng, H., Zhao, X., et al. (2009). Two-step synthesis flowerlike calcium carbonate/biopolymer composite materials. CrystEngComm, 11, 1886-1891. https://doi.org/10.1039/b904075g
  21. Jo, B. W., Chakraborty, S., Jo, J. H., & Lee, Y. S. (2015). Effectiveness of carbonated lime as a raw material in producing a $CO_2$-stored cementitious material by the hydrothermal method. Construction and Building Materials, 95, 556-565. https://doi.org/10.1016/j.conbuildmat.2015.07.062
  22. Jo, B. W., Chakraborty, S., & Kim, K. H. (2014a). Investigation on the effectiveness of chemically synthesized nano cement in controlling the physical and mechanical performances of concrete. Construction and Building Materials, 70, 1-8. https://doi.org/10.1016/j.conbuildmat.2014.07.090
  23. Jo, B. W., Chakraborty, S., Kim, K. H., & Lee, Y. S. (2014b). Effectiveness of the top-down nanotechnology in the production of ultrafine cement (${\sim}220 nm$). Journal of Nanomaterials, 57, 1-9.
  24. Jo, B. W., Chakraborty, S., & Yoon, K. W. (2014c). Synthesis of a cementitious material nanocement using bottom-up nanotechnology concept: An alternative approach to avoid $CO_2$ Emission during production of cement. Journal of Nanomaterials, 97, 1-12.
  25. Juenger, M., Winnefeld, F., Provis, J., & Ideker, J. (2011). Advances in alternative cementitious binders. Cement and Concrete Research, 41, 1232-1243. https://doi.org/10.1016/j.cemconres.2010.11.012
  26. Kar, A., Ray, I., Halabe, U. B., Unnikrishnan, A., & Dawson-Andoh, B. (2014). Characterizations and quantitative estimation of alkali-activated binder paste from microstructures. International Journal of Concrete Structures and Materials, 8(3), 213-228. https://doi.org/10.1007/s40069-014-0069-0
  27. Keeling, C. D., Whorf, T. P., Wahlen, M., & VanderPlicht, J. (1995). Inter-annual extremes in the rate of rise of atmospheric carbon dioxide since 1980. Nature, 75, 666-670.
  28. Kim, M. S., Jun, Y., Lee, C., & Oh, J. E. (2013). Use of CaO as an activator for producing a price competitive non-cement structural binder using ground granulated blast furnace slag. Cement and Concrete Research, 54, 208-214. https://doi.org/10.1016/j.cemconres.2013.09.011
  29. Kontoyannis, C. G., & Vagenas, N. V. (2000). Calcium carbonate phase analysis using XRD and FT-Raman spectroscopy. Analyst., 125, 251-255. https://doi.org/10.1039/a908609i
  30. Kotwal, A. R., Kim, Y. J., Hu, J., & Sriraman, V. (2015). Characterization and early age physical properties of ambient cured geopolymer mortar based on class C fly ash. International Journal of Concrete Structures and Materials, 9(1), 35-43. https://doi.org/10.1007/s40069-014-0085-0
  31. KSF 2405. (2010). Testing method for compressive strength of concrete. Seoul, Korea: Bureau of Korean standard (in Korean).
  32. KSL 5108. (2007). Testing method for setting time of hydraulic cement by vicat needle. Seoul, Korea: Bureau of Korean standard (in Korean).
  33. KSL 5201. (2013). Portland cement. Seoul, Korea: Bureau of Korean standard (in Korean).
  34. Metz, B., Davidson, O., deConinck, H., Loos, M., & Meyer, L., (Eds.) (2005). IPCC special report on carbon dioxide capture and storage. Cambridge University Press, New York, NY: 431. Available at: http://www.ipcc.ch/pdf/special-reports/srccs/srccs_wholereport.pdf. Accessed: 4 Nov 2014.
  35. Myers, R. J., Bernal, S. A., Nicolas, R. S., & Provis, J. L. (2013). Generalized structural description of calcium-sodium aluminosilicate hydrate gels: The cross-linked substituted tobermorite model. Langmuir, 29, 5294-5306. https://doi.org/10.1021/la4000473
  36. Olajire, A. A. (2013). A review of mineral carbonation technology in sequestration of $CO_2$. Journal of Petroleum Science and Engineering, 109, 364-392. https://doi.org/10.1016/j.petrol.2013.03.013
  37. Phair, J. (2006). Green chemistry for sustainable cement production and use. Green Chemistry, 8, 763-780. https://doi.org/10.1039/b603997a
  38. Roychand, R., De Silva, S., Law, D., & Setunge, S. (2016). Micro and nano engineered high volume ultrafine fly ash cement composite with and without additives. International Journal of Concrete Structures and Materials. doi: 10.1007/s40069-015-0122-7.
  39. Schrabback, J. M. (2010). Concepts for 'green' cement. ICR. Available at: www.sika.com/dms/get//Concepts%20for%20Green%20Cement.pdf. Accessed 11 March 2015.
  40. Siegenthaler, U., & Oeschger, H. (1987). Biospheric CO2 emissions during the past 200 years reconstructed by deconvolution of ice core data. Tellus, 39B, 140-154. https://doi.org/10.1111/j.1600-0889.1987.tb00278.x
  41. Stutzman, P.E. (1996). Guide for X-ray powder diffraction analysis of portland cement clinker. NISTIR 5755. Building and fire research laboratory, National Institute of standards and Technology, U.S Department of Commerce, Gaitheresburg, MD. Available at: http://fire.nist.gov/bfrlpubs/build96/PDF/b96138.pdf. Accessed 4 Nov 2014.
  42. Xu, Hua, & Van Deventer, J. S. J. (2000). The geopolymerisation of alumino-silicate minerals. International Journal of Mineral Processing, 59, 247-266. https://doi.org/10.1016/S0301-7516(99)00074-5

Cited by

  1. Investigating Various Factors Affecting the Long-Term Compressive Strength of Heat-Cured Fly Ash Geopolymer Concrete and the Use of Orthogonal Experimental Design Method vol.13, pp.1, 2016, https://doi.org/10.1186/s40069-019-0375-7