References
- Amato, I. (2013). Concrete solutions. Nature News, 494, 300-301. https://doi.org/10.1038/494300a
- Chakraborty, S., Kundu, S. P., Roy, A., Adhikari, B.,& Majumder, S. B. (2013). Effect of jute as fiber reinforcement controlling the hydration characteristics of cement matrix. Industrial and Engineering Chemistry Research, 52, 1252-1260. https://doi.org/10.1021/ie300607r
- Chen, Z. Y., O'Connor, W. K., & Gerdemann, S. J. (2006). Chemistry of aqueous mineral carbonation for carbon sequestration and explanation of experimental results. Environmental Progress & Sustainable Energy, 25(2), 161-166.
- Chindaprasirt, P., & Cao, T. (2015). Setting, segregation and bleeding of alkali-activated cement mortar and concrete binders. In F. P. Torgal, J. A. Labrincha, C. Leonelli, A. Palomo, & P. Chindaprasirt (Eds.), Handbook of alkaliactivated cements, mortars and concretes (pp. 113-131)., Woodhead Publishing series in Civil and Structural Engineering, No.: 54 Cambridge: Woodhead publishing.
- Chizmeshya, A. V. G., McKelvy, M. J., Marzke, R., Ito, N., Wolf, G., Bearat, H., et al. (2007) Investigating geological sequestration reaction processes under in situ process conditions. 32nd International Technical Conference on Coal Utilization & Fuel Systems, 441.
- Criado, M., Fernandez-Jimenez, A., & Palomo, A. (2010). Alkali activation of fly ash. Part III: effect of curing conditions on reaction and its graphical description. Fuel, 89, 3185-3192. https://doi.org/10.1016/j.fuel.2010.03.051
- Crowley, S. F. (2010). Mineralogical and chemical composition of international carbon and oxygen isotope calibration material NBS 19, and reference materials NBS 18, IAEACO-1 and IAEA-CO-8. Geostandards and Geoanalytical Research, 34(2), 193-206. https://doi.org/10.1111/j.1751-908X.2010.00037.x
- Dinakar, P., Sahoo, P. K., & Sriram, G. (2013). Effect of metakaolin content on the properties of high strength concrete. International Journal of Concrete Structures and Materials, 7(3), 215-223. https://doi.org/10.1007/s40069-013-0045-0
-
Feely, R. A., Sabine, C. L., Lee, K., Berelson, W., Kleypas, J., Fabry, V. J., et al. (2004). Impact of anthropogenic
$CO_2$ on the$CaCO_3$ system in the oceans. Science, 305, 362-366. https://doi.org/10.1126/science.1097329 -
Galan, I., Andrade, C., Mora, P., & Sanjuan, M. A. (2010). Sequestration of
$CO_2$ by concrete carbonation. Environmental Science and Technology, 44, 3181-3186. https://doi.org/10.1021/es903581d - Gerdemann, S. J., O'Connor, W. K., Dahlin, D. C., Penner, L. R., & Rush, H. (2007). Ex-situ aqueous mineral carbonation. Environmental Science and Technology, 41, 2587-2593. https://doi.org/10.1021/es0619253
- Han, S. J., Yoo, M., Kim, D. W., & Wee, J. H. (2011). Carbon dioxide capture using calcium hydroxide aqueous solution as the absorbent. Energy & Fuels, 25, 3825-3834. https://doi.org/10.1021/ef200415p
-
Hanchen, M., Prigiobbe, V., Baciocchi, R., & Mazzotti, M. (2008). Precipitation in the mg-carbonate system effects of temperature and
$CO_2$ pressure. Chemical Engineering Science, 63, 1012-1028. https://doi.org/10.1016/j.ces.2007.09.052 - Huijgen, W. J. J., Comans, R. N. J. (2005). Carbon dioxide sequestration by mineral carbonation. Literature review update (2003-2004), ECN-C-05-022. Energy Research Centre of The Netherlands, Petten, Netherlands. Available at: http://www.ecn.nl/docs/library/report/2005/c05022.pdf. Accessed: 23 Dec 2014.
-
Huijgen, W. J. J., Comans, R. N. J., & Witkamp, G. J. (2007). Cost evaluation of
$CO_2$ sequestration by aqueous mineral carbonation. Energy Conversion and Management, 48, 1923-1935. https://doi.org/10.1016/j.enconman.2007.01.035 -
Huijgen, W. J. J., Witcamp, G. J., & Comans, R. N. J. (2004). Mineral
$CO_2$ sequestration in alkaline solid residues. Proceedings Materials of 7th International Conference on Greenhouse Gas Control Technologies (pp. 2415-2418) Vancouver, BC. -
Huijgen, W. J. J., Witkamp, G. J., & Comans, R. N. J. (2006). Mechanisms of aqueous wollastonite carbonation as a possible
$CO_2$ sequestration process. Chemical Engineering Science, 61, 4242-4251. https://doi.org/10.1016/j.ces.2006.01.048 - Jacobsen, J., Rodrigues, M. S., Telling, M. T. F., Beraldo, A. L., Santos, S. F., Aldridge, L. P., et al. (2013). Nano-scale hydrogen-bond network improves the durability of greener cements. Scientific Reports, 3(2667), 1-6. doi: 10.1038/srep02667.
-
Jeon, D., Jun, Y., Jeong, Y., & Oh, J. E. (2015). Microstructural and strength improvements through the use of
$Na_2CO_3$ in a cementless$Ca(OH)_2$ -activated Class F fly ash system. Cement and Concrete Research, 67, 215-225. https://doi.org/10.1016/j.cemconres.2014.10.001 - Jiao, J., Liu, X., Gao, W., Wang, C., Feng, H., Zhao, X., et al. (2009). Two-step synthesis flowerlike calcium carbonate/biopolymer composite materials. CrystEngComm, 11, 1886-1891. https://doi.org/10.1039/b904075g
-
Jo, B. W., Chakraborty, S., Jo, J. H., & Lee, Y. S. (2015). Effectiveness of carbonated lime as a raw material in producing a
$CO_2$ -stored cementitious material by the hydrothermal method. Construction and Building Materials, 95, 556-565. https://doi.org/10.1016/j.conbuildmat.2015.07.062 - Jo, B. W., Chakraborty, S., & Kim, K. H. (2014a). Investigation on the effectiveness of chemically synthesized nano cement in controlling the physical and mechanical performances of concrete. Construction and Building Materials, 70, 1-8. https://doi.org/10.1016/j.conbuildmat.2014.07.090
-
Jo, B. W., Chakraborty, S., Kim, K. H., & Lee, Y. S. (2014b). Effectiveness of the top-down nanotechnology in the production of ultrafine cement (
${\sim}220 nm$ ). Journal of Nanomaterials, 57, 1-9. -
Jo, B. W., Chakraborty, S., & Yoon, K. W. (2014c). Synthesis of a cementitious material nanocement using bottom-up nanotechnology concept: An alternative approach to avoid
$CO_2$ Emission during production of cement. Journal of Nanomaterials, 97, 1-12. - Juenger, M., Winnefeld, F., Provis, J., & Ideker, J. (2011). Advances in alternative cementitious binders. Cement and Concrete Research, 41, 1232-1243. https://doi.org/10.1016/j.cemconres.2010.11.012
- Kar, A., Ray, I., Halabe, U. B., Unnikrishnan, A., & Dawson-Andoh, B. (2014). Characterizations and quantitative estimation of alkali-activated binder paste from microstructures. International Journal of Concrete Structures and Materials, 8(3), 213-228. https://doi.org/10.1007/s40069-014-0069-0
- Keeling, C. D., Whorf, T. P., Wahlen, M., & VanderPlicht, J. (1995). Inter-annual extremes in the rate of rise of atmospheric carbon dioxide since 1980. Nature, 75, 666-670.
- Kim, M. S., Jun, Y., Lee, C., & Oh, J. E. (2013). Use of CaO as an activator for producing a price competitive non-cement structural binder using ground granulated blast furnace slag. Cement and Concrete Research, 54, 208-214. https://doi.org/10.1016/j.cemconres.2013.09.011
- Kontoyannis, C. G., & Vagenas, N. V. (2000). Calcium carbonate phase analysis using XRD and FT-Raman spectroscopy. Analyst., 125, 251-255. https://doi.org/10.1039/a908609i
- Kotwal, A. R., Kim, Y. J., Hu, J., & Sriraman, V. (2015). Characterization and early age physical properties of ambient cured geopolymer mortar based on class C fly ash. International Journal of Concrete Structures and Materials, 9(1), 35-43. https://doi.org/10.1007/s40069-014-0085-0
- KSF 2405. (2010). Testing method for compressive strength of concrete. Seoul, Korea: Bureau of Korean standard (in Korean).
- KSL 5108. (2007). Testing method for setting time of hydraulic cement by vicat needle. Seoul, Korea: Bureau of Korean standard (in Korean).
- KSL 5201. (2013). Portland cement. Seoul, Korea: Bureau of Korean standard (in Korean).
- Metz, B., Davidson, O., deConinck, H., Loos, M., & Meyer, L., (Eds.) (2005). IPCC special report on carbon dioxide capture and storage. Cambridge University Press, New York, NY: 431. Available at: http://www.ipcc.ch/pdf/special-reports/srccs/srccs_wholereport.pdf. Accessed: 4 Nov 2014.
- Myers, R. J., Bernal, S. A., Nicolas, R. S., & Provis, J. L. (2013). Generalized structural description of calcium-sodium aluminosilicate hydrate gels: The cross-linked substituted tobermorite model. Langmuir, 29, 5294-5306. https://doi.org/10.1021/la4000473
-
Olajire, A. A. (2013). A review of mineral carbonation technology in sequestration of
$CO_2$ . Journal of Petroleum Science and Engineering, 109, 364-392. https://doi.org/10.1016/j.petrol.2013.03.013 - Phair, J. (2006). Green chemistry for sustainable cement production and use. Green Chemistry, 8, 763-780. https://doi.org/10.1039/b603997a
- Roychand, R., De Silva, S., Law, D., & Setunge, S. (2016). Micro and nano engineered high volume ultrafine fly ash cement composite with and without additives. International Journal of Concrete Structures and Materials. doi: 10.1007/s40069-015-0122-7.
- Schrabback, J. M. (2010). Concepts for 'green' cement. ICR. Available at: www.sika.com/dms/get//Concepts%20for%20Green%20Cement.pdf. Accessed 11 March 2015.
- Siegenthaler, U., & Oeschger, H. (1987). Biospheric CO2 emissions during the past 200 years reconstructed by deconvolution of ice core data. Tellus, 39B, 140-154. https://doi.org/10.1111/j.1600-0889.1987.tb00278.x
- Stutzman, P.E. (1996). Guide for X-ray powder diffraction analysis of portland cement clinker. NISTIR 5755. Building and fire research laboratory, National Institute of standards and Technology, U.S Department of Commerce, Gaitheresburg, MD. Available at: http://fire.nist.gov/bfrlpubs/build96/PDF/b96138.pdf. Accessed 4 Nov 2014.
- Xu, Hua, & Van Deventer, J. S. J. (2000). The geopolymerisation of alumino-silicate minerals. International Journal of Mineral Processing, 59, 247-266. https://doi.org/10.1016/S0301-7516(99)00074-5
Cited by
- Investigating Various Factors Affecting the Long-Term Compressive Strength of Heat-Cured Fly Ash Geopolymer Concrete and the Use of Orthogonal Experimental Design Method vol.13, pp.1, 2016, https://doi.org/10.1186/s40069-019-0375-7