• Title/Summary/Keyword: Alternating stress

Search Result 81, Processing Time 0.026 seconds

Identification on Fatigue Failure of Impeller at Single Stage Feedwater Pumps During Commissioning Operation (단단 주 급수 펌프 임펠러에서 시운전 중 발생한 피로 절손에 관한 규명 연구)

  • Kim, Yeon-Whan;Kim, Kye-Yean;Bae, Chun-Hee;Lee, Young-Shin
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.9
    • /
    • pp.937-942
    • /
    • 2008
  • This paper presents a case history on failures of impeller and shaft due to pressure pulsation at single stage feed water pumps in 700 MW nuclear power plant during commissioning operation. The pumps had been service and had run for approximately $40{\sim}50$ hours. For the most part, the failures of impeller occurred with the presence of a number of fatigue cracks. All cracks were associated with the deleterious surface layer of impeller by visual and metallurgical examination. On-site testing and analytical approach was performed on the systems to diagnose the problem and develop a solution to reduce the effect of exciting sources. A major concern at high-energy centrifugal pump is the pressure pulsation created from trailing edge of the Impeller blade, flow separation and recirculation at centrifugal pumps of partial load. Pressure pulsation due to the interaction generating between impeller and casing coincided with natural frequencies of the impeller and shaft system during 1ow load operation. It was identified that dynamic stress exceeding the fatigue strength of the material at the thin shroud section due to the hydraulic instability at running condition below BEP.

Structural Integrity Evaluation of Large Main Steam Piping by Water Hammering (수격 현상에 근거한 대형 주증기관의 구조건전성 평가)

  • Jo, Jong-Hyun;Lee, Young-Shin;Kim, Yeon-Whan;Jin, Hai Lan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.9
    • /
    • pp.1103-1108
    • /
    • 2012
  • A main steam pipe system is a branch pipe that connects a boiler with a turbine. Water hammering analysis is very important for limiting the damage caused to pipe systems by operation conditions. Water hammering created by an unsteady flow in pipeline systems can cause excessive change in pressure, vibration, and noise. The main steam pipe structure should be designed to safely maintain the pressure pulsation and several vibrations under operation environments. This study evaluated the structural integrity of a main steam pipe during suspended and normal operation by using the ASME fatigue life methodology and finite element analysis. In the analysis, water hammering was used for transient analysis. The calculated alternating stress and fatigue stress were compared with the applicable limits of ASME fatigue life. All the evaluation results satisfied the requirements of the ASME fatigue life.

Germination and Emergence of Eclipta prostrata(L.) L. (한련초의 발아(發芽) 및 출현(出現))

  • Lee, H.K.;Moody, K.
    • Korean Journal of Weed Science
    • /
    • v.8 no.3
    • /
    • pp.299-307
    • /
    • 1988
  • Several experiments were conducted to investigate the effects of external factors on germination and emergence of Eclipta prostrata (L.)L. The weight of viable achenes doubled as a result of 90 minutes soaking in water. The germination of E. prostrata was significantly improved by alternating temperatures. At a constant temperature of $35^{\circ}C$, only 78% of the achenes germination, whereas at alternating temperatures of 35/$20^{\circ}C$, 96.5% of the achenes germinated. E. prostrata was more sensitive than rice to moisture stress. No germination of E. prostrata achenes occurred in the absence of oxygen. No germination of E. prostrata achenes occurred in the dark or when they were exposed to green, blue, and far-red light. Germination of E. prostrata achenes was influenced by the duration of illumination after absorption of water. Ten hours of illumination was needed for maximum germination and 2 hours for 50% germination. No significant changes in germination of E. prostrata achenes were observed between pH 3 and 10. A high tolerance of E. prostrata achenes to salt was observed. Emergence of E. prostrata achenes was greatly affected by planting depth. In the upland soil, 74.0% of the achenes planted on the soil surface germinated, and no emergence was at planting depths of 0.5 cm or greater.

  • PDF

Effects of Hydrogen Peroxide on Germination and Early Growth of Sorghum (Sorghum bicolor) (과산화수소 처리가 수수의 발아 및 초기 생장에 미치는 효과)

  • Shim, Doobo;Song, Ki Eun;Park, Chan Young;Jeon, Seung Ho;Hwang, Jung Gyu;Kang, Eun-ju;Kim, Jong Cheol;Shim, Sangin
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.63 no.2
    • /
    • pp.140-148
    • /
    • 2018
  • As the global warming causing desertification increase, there is growing concern about damage of crops. It was to investigate how the treatment with hydrogen peroxide before leaf development affects the growth and yield of sorghum for minimizing a damage of crops to drought. The germination experiment was conducted at alternating temperature of $25^{\circ}C/20^{\circ}C$(12 hr/12 hr) under water stress condition of 0 ~ -0.20 MPa adjusted with PEG solution containing 0 and 10 mM $H_2O_2$. In order to know the effect of foliar application of hydrogen peroxide on the growth of sorghum, 10 mM hydrogen peroxide was treated to leaves at 3-leaf stage of sorghum growing in greenhouse conditions. Seed germination rate was increased by 20% in hydrogen peroxide treatment as compared to the Control. under water stress conditions (-0.15 ~ -0.20 MPa). The length of seedlings was also on the rise by the hydrogen peroxide treatment. In the greenhouse pot experiment, the morphological characteristics (plant height, stem diameter, leaf length, and leaf number) and physiological characteristics (chlorophyll content, chlorophyll fluorescence (Fv/Fm), stomatal conductance) were higher in the plants treated with hydrogen peroxide under the drought stress condition than those of plants of $H_2O$ treatment. Experiment conducted with the soil moisture gradient system showed that the foliar application of hydrogen peroxide increased photosynthetic ability of sorghum plant with respect to SPAD value and stomatal conductance and rooting capacity (root weight and root length) under drought condition. Generally, hydrogen peroxide treatment in sorghum increased the tolerance to drought stress and maintained better growth due to ameliorating oxidative stress.

The Change of Nearshore Processes due to the Development of Coastal Zone (연안역 개발에 따른 해안과정의 변화)

  • Lee, J.W.;Lee, S.J.;Lee, H.;Jeong, D.D.
    • Journal of Korean Port Research
    • /
    • v.13 no.1
    • /
    • pp.155-166
    • /
    • 1999
  • The construction of the coastal structures and reclamation work causes the circulation reduced in the semi-closed inner water area and the unbalanced sediment budget of beach results in an alteration of beach topography. Among the various fluid motions in the nearshore zone water particle motion due to wave and wave-induced currents are the most responsible for sediment movement. Therefore it is needed to predict the effect of the environmental change because of development and so the prediction of wave transformation dose. The purpose of this study is to introduce the relation between waves wave-induced currents and sediment movement. In this study we will show numerical method using energy conservation equation involving reflection diffraction and reflection and the surfzone energy dissipation term due to wave breaking is included in the basic equation. For the wave-induced current the momentum equation was combined with radiation stresses lateral mixing and friction Various information is required in the prediction of wave-induced current depending on the prediction tool. We can predict changes in wave-induced current from the distribution of wave especially near the wave breaking zone. To evaluate these quantities we have to know the local condition of waves mean sea level and so on. The results from the wave field and wave-induced current field deformation models are used as input data of the sediment transport and bottom change model. Numerical model were established by a finite difference method then were applied to the development plan of the eastern Pusan coastal zone Yeonhwa-ri and Daebyun fishing port. We represented the result with 2-D graphics and made comparison between before and after development.

  • PDF

Nondestructive Evaluation of Fatigue Damage (피로손상과 비파괴평가)

  • Kwon, Oh-Yang
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.1
    • /
    • pp.54-61
    • /
    • 2000
  • In order to determine the mode I stress intensity factor ($K_I$) by means of the alternating current potential drop(ACPD) technique, the change in potential drop due to load for a paramagnetic material containing a two-dimensional surface crack was examined. The cause of the change in potential drop and the effects of the magnetic flux and the demagnetization on the change in potential drop were clarified by using the measuring systems with and without removing the magnetic flux from the circumference of the specimen. The change in potential drop was linearly decreased with increasing the tensile load and was caused by the change in conductivity near the crack tip. The reason of decreasing the change in potential drop with increasing the tensile load was that the increase of the conductivity near the crack tip due to the tensile load caused the decreases of the resistance and internal inductance of the specimen. The relationship between the change in potential drop and the change in $K_I$ was not affected by demagnetization and was independent of the crack length.

  • PDF

Melatonin modulates nitric oxide-regulated WNK-SPAK/OSR-1-NKCC1 signaling in dorsal raphe nucleus of rats

  • Yang, Hye Jin;Kim, Mi Jung;Kim, Sung Soo;Cho, Young-Wuk
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.25 no.5
    • /
    • pp.449-457
    • /
    • 2021
  • The sleep-wake cycle is regulated by the alternating activity of sleep- and wake-promoting neurons. The dorsal raphe nucleus (DRN) secretes 5-hydroxytryptamine (5-HT, serotonin), promoting wakefulness. Melatonin secreted from the pineal gland also promotes wakefulness in rats. Our laboratory recently demonstrated that daily changes in nitric oxide (NO) production regulates a signaling pathway involving with-no-lysine kinase (WNK), Ste20-related proline alanine rich kinase (SPAK)/oxidative stress response kinase 1 (OSR1), and cation-chloride co-transporters (CCC) in rat DRN serotonergic neurons. This study was designed to investigate the effect of melatonin on NO-regulated WNK-SPAK/OSR1-CCC signaling in wake-inducing DRN neurons to elucidate the mechanism underlying melatonin's wake-promoting actions in rats. Ex vivo treatment of DRN slices with melatonin suppressed neuronal nitric oxide synthase (nNOS) expression and increased WNK4 expression without altering WNK1, 2, or 3. Melatonin increased phosphorylation of OSR1 and the expression of sodium-potassium-chloride co-transporter 1 (NKCC1), while potassium-chloride co-transporter 2 (KCC2) remained unchanged. Melatonin increased the expression of tryptophan hydroxylase 2 (TPH2, serotonin-synthesizing enzyme). The present study suggests that melatonin may promote its wakefulness by modulating NO-regulated WNK-SPAK/OSR1-KNCC1 signaling in rat DRN serotonergic neurons.

Long-term Behavior Characteristics of Backfilled Ground by EPS (EPS로 뒷채움된 지반의 장기거동특성)

  • Chun, Byung-Sik;Jung, Chang-Hee;Choi, Hui-Rim
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.10
    • /
    • pp.151-161
    • /
    • 2007
  • EPS provides a superb self-sufficient stability. Studies on the process of EPS construction method focus on the inchoate phase of general construction, which is increasingly applied to construction sites throughout the world. Unfortunately, there has been little study on the durability and long-term soil behavior involving EPS materials. In this study, the boring, in-site and laboratory tests were conducted to examine the long-term soil behavior in the back-filling of alternating behind the side to which EPS was applied. And results of finite element analysis considering various test results and the soil behavior data measured during the construction show that EPS construction method is a superb process that relieves the load and consequently reduces the settlement, alleviates the stress on the abutment, and prevents lateral flow.

Demonstration of Developed Numerical Procedure to Describe 3-dimensional Long-term Behavior of the Pleistocene Marine Foundations (Pleistocene 해저지반의 3차원 장기거동 해석을 위해 개발한 수치해석 기법의 입증)

  • Yun, Seong-Kyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.7
    • /
    • pp.5-14
    • /
    • 2020
  • Kansai International Airport (KIX) was opened in September 1994. Although 26 years have passed since the completion of the first island, long-term settlement is still in progress. This settlement occurs in the Pleistocene layer. For it is not easy to determine the permeability of the Pleistocene sand layer because the thickness and the degree of fine content in the horizontal direction are constantly changing. In addition, it is also a difficult to predict the interactive behavior of the ground due to the construction of the second phase island adjacent to it. In order to solve this problem, a two-dimensional finite element analysis considering elasto-viscoplastic was performed to evaluate the long-term deformation, including the interactive behavior of the alternating Pleistocene foundation due to the construction of two adjacent reclaimed islands. In general, two-dimensional analysis can be used when a section can represent the entire sections. However, Kansai Airport is an artificial reclaimed island so two-dimensional analysis cannot solve the problem such as the stress deformation in the corners of the island. Additionally, the structure of the actual sub-ground through physical exploration is non-homogeneity and its thickness is also not constant. Therefore, there are limitations for the two-dimensional analysis to explain the phenomena. That is, three-dimensional analysis is strongly required. Due to these demands, the author extended the existing two-dimensional program capable of elasto-viscoplastic analysis to three-dimensional and completed the verification of the three-dimensional program developed through one-dimensional consolidation analysis. In order to demonstrate the validity of the developed 3D program that has been verified, an analysis is performed under the same analysis conditions as the existing research using a two-dimensional program. The effectiveness of the developed 3D numerical analysis program was demonstrated by comparing the analysis results with the 2D results and actual measurement data.

Introduction to Electrochemical Quartz Crystal Microbalance Technique for Leaching Study of Metals (금속 침출연구를 위한 전기화학적 미소수정진동자저울 기술 소개)

  • Kim, Min-seuk;Chung, Kyeong Woo;Lee, Jae-chun
    • Resources Recycling
    • /
    • v.29 no.1
    • /
    • pp.25-34
    • /
    • 2020
  • Electrochemical Quartz Crystal microbalance is a tool that is capable of measuring nanogram-scale mass change on electrode surface. When applying alternating voltage to the quartz crystal with metal electrode formed on both sides, a resonant frequency by inverse piezoelectric effect depends on its thickness. The resonant frequency changes sensitively by mass change on its electrode surface; frequency increase with metal dissolution and decrease with metal deposition on the electrode surface. The relationship between resonant frequency and mass change is shown by Sauerbrey equation so that the mass change during metal dissolution can be measured in real time. Especially, it is effective in the case of reaction mechanism and rate studies accompanied by precipitation, volatilization, compound formation, etc. resulting in difficulties on ex-situ AA or ICP analysis. However, it should be carefully considered during EQCM experiments that temperature, viscosity, and hydraulic pressure of solution, and stress and surface roughness can affect on the resonant frequency. Application of EQCM was shown as a case study on leaching of platinum using aqueous chlorine for obtaining activation energy. A platinum electrode of quartz crystal oscillator with 1000 Å thickness exposed to solution was used as leaching sample. Electrogenerated chlorine as oxidant was purged and its concentration was controlled in hydrochloric acid solution. From the experimental results, platinum dissolution by chlorine is chemical reaction control with activation energy of 83.5 kJ/mol.