DOI QR코드

DOI QR Code

Effects of Hydrogen Peroxide on Germination and Early Growth of Sorghum (Sorghum bicolor)

과산화수소 처리가 수수의 발아 및 초기 생장에 미치는 효과

  • Shim, Doobo (Institute of Hadong Green Tea) ;
  • Song, Ki Eun (Division of Applied Life Science (Brain Korea 21 program), Gyeongsang National University) ;
  • Park, Chan Young (Division of Applied Life Science (Brain Korea 21 program), Gyeongsang National University) ;
  • Jeon, Seung Ho (Department of Agronomy & Medicinal Plant Resources, Gyeongnam National University of Science and Technology) ;
  • Hwang, Jung Gyu (Institute of Hadong Green Tea) ;
  • Kang, Eun-ju (Institute of Hadong Green Tea) ;
  • Kim, Jong Cheol (Institute of Hadong Green Tea) ;
  • Shim, Sangin (Department of Agronomy, Gyeongsang National University)
  • 심두보 ((재)하동녹차연구소) ;
  • 송기은 (경상대학교 응용생명과학부 BK21 프로그램) ;
  • 박찬영 (경상대학교 응용생명과학부 BK21 프로그램) ;
  • 전승호 (경남과학기술대학교) ;
  • 황정규 ((재)하동녹차연구소) ;
  • 강은주 ((재)하동녹차연구소) ;
  • 김종철 ((재)하동녹차연구소) ;
  • 심상인 (경상대학교 농학과)
  • Received : 2018.02.22
  • Accepted : 2018.03.26
  • Published : 2018.06.30

Abstract

As the global warming causing desertification increase, there is growing concern about damage of crops. It was to investigate how the treatment with hydrogen peroxide before leaf development affects the growth and yield of sorghum for minimizing a damage of crops to drought. The germination experiment was conducted at alternating temperature of $25^{\circ}C/20^{\circ}C$(12 hr/12 hr) under water stress condition of 0 ~ -0.20 MPa adjusted with PEG solution containing 0 and 10 mM $H_2O_2$. In order to know the effect of foliar application of hydrogen peroxide on the growth of sorghum, 10 mM hydrogen peroxide was treated to leaves at 3-leaf stage of sorghum growing in greenhouse conditions. Seed germination rate was increased by 20% in hydrogen peroxide treatment as compared to the Control. under water stress conditions (-0.15 ~ -0.20 MPa). The length of seedlings was also on the rise by the hydrogen peroxide treatment. In the greenhouse pot experiment, the morphological characteristics (plant height, stem diameter, leaf length, and leaf number) and physiological characteristics (chlorophyll content, chlorophyll fluorescence (Fv/Fm), stomatal conductance) were higher in the plants treated with hydrogen peroxide under the drought stress condition than those of plants of $H_2O$ treatment. Experiment conducted with the soil moisture gradient system showed that the foliar application of hydrogen peroxide increased photosynthetic ability of sorghum plant with respect to SPAD value and stomatal conductance and rooting capacity (root weight and root length) under drought condition. Generally, hydrogen peroxide treatment in sorghum increased the tolerance to drought stress and maintained better growth due to ameliorating oxidative stress.

본 논문은 수수에 엽면처리된 과산화수소의 한발 스트레스 완화 효과가 있는지 알아보기 생리적 연구를 실시하였다. 수분 스트레스가 가장 심한 -0.15 MPa와 -0.20 MPa에서 과산화수소 처리에 의한 발아율 증가가 20%로 발아율의 차이가 가장 크게 조사되었다. 이는 과산화수소가 발아 과정에서 자극을 주어 대사 활성을 유도하여 수분스트레스가 심한 조건에서 일어나는 대사 저하가 완화되었기 때문으로 보인다. 1. 수분 스트레스 하에서 10 mM 과산화수소 처리는 무처리 보다 20% 높은 발아율을 보였고, 유아 유근의 신장을 촉진하였다. 2. 온실 pot 실험 결과 한발 하에서 과산화수소 처리는 형태적 형질(초장, 줄기 직경, 엽장, 엽수)과 생리적 형질(SPAD, 엽록소형광, 기공전도도) 모두 증가시켰다. 토양수분 구배장치를 이용한 실험 결과 역시 과산화수소 엽면처리가 광합성 능력(SPAD, 기공전도도)과 뿌리 발근(지하부 건물중, 뿌리길이)이 우수하여 생육, 건물 생산량이 무처리 보다 높았다. 결과적으로 과산화수소의 처리는 수수의 발아율 향상과 기공 폐쇄를 억제하여 광합성능력을 향상시켰다. 이를 통해 한발 스트레스 대한 내성을 높여 수수의 생육을 유지 및 회복시켜 주었다.

Keywords

References

  1. Abass S. M. and H. I. Mohamed. 2011. Alleviation of adverse effects of drought stress on common bean (Phaseolus vulgaris L.) by exogenous application of hydrogen peroxide. Bangladesh J. Bot. 41 : 75-83.
  2. Ali G. M. and M. Setsuko. 2006. Proteomic analysis of rice leaf sheath during drought stress. J. Proteome Res. 5 : 396-403. https://doi.org/10.1021/pr050291g
  3. Azevedo Neto A. D., J. T. Prisco, J. Eneas-Filho, J. V. Medeiros, and E. Gomes-Filho. 2005. Hydrogen peroxide pre-treatment induces salt-stress acclimation in maize plants. J. Plant Physiol. 162 : 1114-1122. https://doi.org/10.1016/j.jplph.2005.01.007
  4. Beck C., J. Grieser, M. Kottek, F. Rubel, and B. Rudolf. 2006. Characterizing global climate change by means of Koppen climate classification. Deutscher Wetterdienst. 3 : 413-423.
  5. Bosabalidis A. M. and G. Kofidis. 2002. Comparative effects of drought stress on leaf anatomy of two olive cultivars. Plant Sci. 163 : 375-379. https://doi.org/10.1016/S0168-9452(02)00135-8
  6. Brestic M., G. Cornic, M. J. Fryer, and N. R. Baker. 1995. Does photorespiration protect the photosynthetic apparatus in French bean leaves from photoinhibition during drought stress. Planta 196 : 450-457.
  7. Chang H. G. and Y. S. Park. 2005. Effects of waxy and normal sorghum flours on sponge cake properties. Food Eng. Prog. 9 : 199-207.
  8. Chaves M. M., J. Flexas, and C. Pinheiro. 2009. Photosynthesis under drought and salt stress: Regulation mechanisms from whole plant to cell. Ann. Bot. 103 : 551-560. https://doi.org/10.1093/aob/mcn125
  9. Choi W. Y., Y. W. Kwon, and J. H. Park. 1997. Grain yield and physiological responses of water stress at reproductive stage in barley. Korean J. Crop Sci. 42 : 263-269.
  10. Djanaguiraman M., J. A. Sheeba, A. K. Shanker, D. D. Devi, and U. Bangarusamy. 2006. Rice can acclimate to lethal level of salinity by pretreatment with sublethal level of salinity through osmotic adjustment. Plant Soil 284 : 363-373. https://doi.org/10.1007/s11104-006-0043-y
  11. Egamberdieva D., M. Reckling, and S. Wirth. 2016. Biochar-based Bradyrhizobium inoculum improves growth of lupin (Lupinus angustifolius L.) under drought stress. Euro. J. Soil Biol. 78 : 38-42.
  12. Ejeta G. and J. E. Knoll. 2007. Marker-assisted selection in sorghum. In: Varshney, R. K., Tuberosa, R. (Eds.), Genomics-Assisted Crop Improvement. springer, Netherlands. pp. 187-205.
  13. Faize M., L. Burgos, L. Faize, A. Piqueras, E. Nicolas, G. Barba-Espin, M. J. Clemente-Moreno, R. Alcobendas, T. Artlip, and J. A. Hernandez. 2011. Involvement of cytosolic ascorbate peroxidase and Cu/Zn-superoxide dismutase for improved tolerance against drought stress. J. Exp. Bot. 62 : 2599-2613. https://doi.org/10.1093/jxb/erq432
  14. Gregorio B. E., A. H. José, and D. V. Pedro. 2012. Role of $H_2O_2$ in pea seed germination. Plant Signal. Behav. 7 : 193-195. https://doi.org/10.4161/psb.18881
  15. Kim K. O., H. S. Kim, and H. S. Ryu. 2006. Effect of Sorghum bicolor L. Moench (sorghum, su-su) water extracts on mouse immune cell activation. J. Korean Diet. Assoc. 12 : 82-88.
  16. Lu H. and V. J. Higgins. 1999. The effect of hydrogen peroxide on the viability of tomato cells and of the fungal pathogen Cladosporium fulvum. Physiol. Mol. Plant Pathology. 54 : 131-43. https://doi.org/10.1006/pmpp.1998.0195
  17. Michel B. E. and M. R. Kaufmann. 1973. The osmotic potential of polyethylene glycol 6000. Plant Physiol. 51 : 914-916. https://doi.org/10.1104/pp.51.5.914
  18. Pandolfi C., S. Mancuso, and S. Shabala. 2012. Physiology of acclimation to salinity stress in pea (Pisum sativum). Environ. Exp. Bot. 84 : 44-51. https://doi.org/10.1016/j.envexpbot.2012.04.015
  19. Park M. E. 1995. The effect of soil moisture stress on the growth of barley and grain quality. Korean J. Soil. Sci. Fert. 28 : 165-175.
  20. Saglam A., A. Kadioglu, M. Demiralay, and R. Terzi. 2014. Leaf rolling reduces photosynthetic loss in maize under severe drought. Acta Bot. Croat. 73 : 315-332. https://doi.org/10.2478/botcro-2014-0012
  21. Uchida A., A. T. Jagendorf, T. Hibino, and T. Takabe. 2002. Effects of hydrogen peroxide and nitric oxide on both salt and heat stress tolerance in rice. Plant Sci. 63 : 515-523.
  22. Wahid A., M. Perveen, S. Gelani, and S. M. Basra. 2007. Pretreatment of seed with $H_2O_2$ improves salt tolerance of wheat seedlings by alleviation of oxidative damage and expression of stress proteins. J. Plant. Physiol. 164 : 283-294. https://doi.org/10.1016/j.jplph.2006.01.005
  23. Woo Y. H., H. J. Kim, T. Y. Kim, K. D. Kim, Y. C. Huh, H. Chun, I. H. Cho, Y. I. Nam, K. D. Ko, K. H. Lee, and K. H. Hong. 2006. The influence of hydrogen peroxide treatment on water stress, photosynthesis and thermotolerance of cucumber (Cucumis sativus) in greenhouse cultivation during summer. J. VIB. Control. 15 : 39-45.
  24. Woo Y. H., H. J. Kim, Y. C. Huh, T. Y. Kim, K. D. Kim, I. H. Cho, K. D. Ko, K. H. Lee, and K. H. Hong. 2005. Effect of high temperature adaptable improvement on cucumber (Cucumis sativus) of greenhouse according to hydrogen peroxide treatment at summer. J. VIB. Control. 14 : 95-99.
  25. Yordanov I., V. Velikova, and T. Tsonev. 2000. Plant responses to drought, acclimation, and stress tolerance. Photosynthetica 38 : 171-186. https://doi.org/10.1023/A:1007201411474