• Title/Summary/Keyword: Alluvial groundwater

Search Result 105, Processing Time 0.022 seconds

포항지역 지열수의 수리지구화학적 특성

  • 고동찬;염병우;하규철;송윤호
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.453-454
    • /
    • 2004
  • Hydrogeochemical and isotopic characteristics were investigated for groundwater of Tertiary basin in southeastern part of Korea where deep drilling is in progress for geothermal investigation. According to geology, aquifer was distinguished as alluvial, tertiary sedimentary bedrock (bedrock groundwater), and fractured volcanic rock (deep groundwater). Groundwater of each aquifer is distinctively separated in Eh-pH conditions and concentrations of Cl, F, B and HCO$_3$. Deep groundwater has very low level 3H and 14C whereas alluvial groundwater has those of recent precipitation level. However one of deep groundwater show mixed characteristics in terms of hydrochemistry which indicates effect of pumping. Deep groundwater have temperature of 38 to 43$^{\circ}C$ whereas bedrock and alluvial groundwater have temperature less than 2$0^{\circ}C$. Fractured basement rock aquifer has different hydrogeologicalsetting from bedrock and alluvial aquifer considering hydrogeochemical and isotopic characteristics, and temperature.

  • PDF

금강 부여 군수리 충적 대수층 조사를 위한 고해상도 지구물리탐사 - 탄성파 탐사 및 GPR 조사를 중심으로 -

  • 김형수;서만철;이철우;진세화
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.287-291
    • /
    • 2003
  • To delineate the internal structures of alluvial aquifer, high resolution seismic and GPR methods were adopted in Buyeo Gunsu-Ri area. The result of seismic refraction survey shows the water table of the aquifer and the result of seismic reflection reveals the basement and somewhat dominant internal structures of alluvial aquifer. The internal heterogeneity due to variations in channel behavior can be delineated using GPR survey. GPR profiles for the point bar deposits near Buyeo county reveals two different stratigraphic units the lower inclined heterogeneous strata and the upper horizontally stratified strata. According to the increase of demand for water resource using artificial recharge in alluvium, it is believed that the information acquired by high resolution geophysical methods will have an important roles for the effective and sustainable development and usage of groundwater in alluvial aquifer.

  • PDF

Development of Technology on Water Thermal Energy Utilization of Riverbank(including Alluvial and Riverbed deposits) Filtration (강변여과수(충적층 및 하상) 열자원 활용 기술 개발)

  • Kim, Hyoung-Soo;Seo, Min-Woo;Jung, Woo-Sung;Song, Yoon-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.11a
    • /
    • pp.591-594
    • /
    • 2005
  • Geothermal energy becomes to be one of the promising energy sources. In this study, technology using water thermal energy from riverbank filtration system(including alluvial and riverbed deposit) is reviewed and checked as an energy resources. The objects of this study are (1) long-term monitoring of alluvial and riverbed sites, (2) preliminary design of cooling and heating system at riverbank filtration facility, and (3) calculation of potential groundwater heat energy, including riverbank filtration system. Measuring data of alluvial and riverbank filtration show slight fluctuations comparing to temperature of atmospheric air which indicates that groundwater obtained from the riverbank filtration system have a sufficient potential as a source of cooling and heating energy.

  • PDF

Hydrogeochemical and geostatistical study of shallow alluvial groundwater in the Youngdeok area

  • Kim, Nam-Jin;Yun, Seong-Taek;Kwon, Man-Jae;Kim, Hyoung-Soo;Kim, Chang-Hoon;Koh, Yong-Kwon
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2000.11a
    • /
    • pp.232-236
    • /
    • 2000
  • Multi-regression statistical analyses were applied for the water quality data of shallow alluvial ground water (n = 47) collected from the Youngdeok area, in order to quantitatively generalize the natural (non-anthropogenic) causes of regional water quality variation. Seven samples having the high contamination index ( $C_{a}$ > 3) reflect the striong effects by anthropogenic activity. Most of the alluvial groundwaters have acquired their quality primarily due to the dissolution of carbonate minerals. The results of multi-regression analysis show that chlorine is mainly derived from seawater effect. Sulfur isotopic compositions of dissolved sulfur and the S $O_4$/Cl ratio also enable us to discriminate the samples (n = 18) which are affected by atmospheric input of marine aerosol (sea-spray) and also by mixing between freshwater and seawater. Hydrogen and oxygen isotope data of the samples collected lie close to the local meteoric water line obtained from nearby Pohang city but has lower slope (5.45) on the $\delta$D-$^{18}$ O plot, indicating that alluvial groundwater was recharged from infiltrated meteoric water which has undergone some degree of kinetic evaporation. The estimated initial isotopic composition of the recharged water ($\delta$D = -74.8$^{0}$ /$_{00}$, $\delta$$^{18}$ O = -10.8$^{[-1000]}$ /$_{[-1000]}$ ) suggests that the alluvial ground water recharge largely occurs during summer storm events.s.s.

  • PDF

국가지하수 관측망의 양수시험 자료 해석을 통한 대수층 특성 분석

  • 전선금;구민호;김용제;강인옥
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.487-491
    • /
    • 2004
  • For tile hydrogeological data of the National Groundwater Monitoring Wells(NGMW), a statistical analysis is made to reveal aquifer characteristics of the country. Results of the pumping and recovery test are classified into 4~5 types by the pattern of drawdown and residual drawdown curves. The analysis of aquifer characteristics shows that the hydraulic conductivity of alluvial aquifers is greater than that of fractured-rock aquifers. The hydraulic conductivity of alluvial aquifers slightly increases as the distance to the discharge area decreases. 77.5% of the NGMWs, where the distance to the discharge area is more than 100m, shows the constant head boundary. This result suggests that the fractured and the alluvial aquifers are fairly interconnected, and water can be supplied from one aquifer to tile other where pumping tests are performed. It is analyzed that the wells showing the impermeable boundary are influenced by small scale of aquifers, poor aquifer transmissivities, and impermeable layers.

  • PDF

지하수 수위 변동을 이용한 지하수 함양률 산정(전주-완주, 곡성 지역)

  • 조민조;하규철;이명재;이진용;이강근
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.04a
    • /
    • pp.217-220
    • /
    • 2002
  • To investigate the conditions of groundwater resources In Jeonju, Wanju, and Goksung, a basic groundwater survey was performed. From the survey, various useful informations such as groundwater use, waterlevel distribution, water chemistry were obtained. This study focused on the analysis of the water levels, which were automatically monitored with pressure transducers or manually measured. The monitorings were conducted for both shallow wells completed in alluvial aquifers and deep wells in bedrock aquifers. The automatically monitored waterlevels for alluvial aquifer were also used for estimation of recharge in the study area. This study presents results of the investigation.

  • PDF

Hydrogeochemical study of a watershed in Pocheon area: controls of water chemistry

  • Kim, Kyoung-Ho;Yun, Seong-Taek;Chae, Soo-Ho;Jean, Jong-Wook;Lee, Jeong-Ho;Kweon, Hae-Woo
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.121-121
    • /
    • 2004
  • The groundwater in the Pocheon area occurs from both a fractured bedrock aquifer in igneous and metamorphic rocks and an alluvial aquifer with a thickness of <50 m, and forms a major source of domestic and agricultural water supply. In this study, we performed a hydrogeochemical study in order to identify the control of geochemical processes on groundwater quality. For this study, groundwater level and physicochemical parameters (EC, Eh, pH, alkalinity) were monitored once a month from a total of 150 groundwater wells between June 2003 to August 2004. A total of 153 water samples (13 surface water, 66 alluvial groundwater, 74 bedrock groundwater) were also collected and analyzed in February 2004. Groundwater chemistry in the study area is very complex, depending on a number of major factors such as geology, degree of chemical weathering, and quality of recharge water. Hydrochemical reactions such as the leaching of surficial and near-solace soil salts, dissolution of calcite, cation exchange, and weathering of silicate minerals are proposed to explain the chemistry of natural groundwater. Alluvial groundwaters locally have very high TDS concentrations, which are characterized by their chloride(nitrate)-sulfate-bicabonate facies and low Na/Cl ratio. Their grondwater levels are highly fluctuated according to rainfall event. We suggest that high nitrate content and salinity in such alluvial groundwaters originates from the local recharge of sewage effluents and/or fertilizers. Likewise, high concentrations of nitrate were also locally observed in some bedrock groundwaters, suggesting their effect of anthropogenic contamination. This is possibly due to the bypass flow taking place through macropores. Tile degree of the weathering of silicate minerals seems to be a major control of the distribution of major cations (sodium, calcium, magnesium, potassium) in bedrock groundwaters, which show a general increase with increasing depth of wells. Thermodynamic interpretation of groundwater chemistry shows that the groundwater in the study area is in chemical equilibrium with kaolinite and Na-montmorillonite, which indicates that weathering of plagioclase to those minerals is a major control of hydrochemistry of bedrock groundwater. The interpretation of the molar ratios among major ions, as well as the mass balance calculation, also indicates the role of both dissolution/precipitation of calcite and Ca-Na cationic exchange as bedrock groundwaters evolves progressively.

  • PDF

Statistical Analysis of Aquifer Characteristics Using Pumping Test Data of National Groundwater Monitoring Wells for Korea (국가지하수 관측망의 양수시험 자료를 이용한 국내 대수층 특성의 통계적 분석)

  • Jeon Seon-Keum;Koo Min-HO;Kim Yongje;Kang In-Oak
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.6
    • /
    • pp.32-44
    • /
    • 2005
  • 314 pumping test data of the National Groundwater Monitoring Wells (NGMWs) are analyzed to present statistical properties of fractured-rock and alluvial aquifers of Korea such as distribution of hydraulic conductivity, empirical relations between transmissivity and specific capacity, and time-drawdown patterns of pumping and recovery test. The mean hydraulic conductivity of alluvial aquifers (1.26 m/day) is 17 times greater than that of fractured-rock aquifers (0.076 m/day). Hydraulic conductivity of fracture-rock aquifers ranges in value over 4 orders of magnitude which coincide with representative values of fractured crystalline rocks and shows distinctive differences among rock types with the lowest values for metamorphic rocks and the highest values for sedimentary rocks. In consideration of the estimated transmissivity with some simplifying assumptions, it Is likely that $32\%$ of groundwater flow for NGMWs would occur through fractured-rock aquifers and $68\%$ through alluvial aquifers. Based on 314 pairs of data, empirical relations between transmissivity and specific capacity are presented for both fractured-rock and alluvial aquifers. Depending on time-drawdown patterns during pumping and recovery test, NGMWs are classified into $4\~5$ types. Most of NCMWs $(83.7\%)$ exhibit the recharge boundary type, which call be attributed to sources of water supply such as streams adjacent to the pumping well, the vertical groundwater flux between fractured-rock and the alluvial aquifers, and the delayed yield associated with gravity drainage occurring in unconfined aquifers.

Evaluating Effects of Membrane Filter Pore Sizes on Determination of Dissolved Concentrations of Major Elements in Groundwater and Surface Water Near Nakdong River (낙동강변 지하수 및 지표수의 주요원소 용존 농도 결정에 대한 막필터 공극 크기의 영향 분석)

  • Kim, Bo-A;Koh, Dong-Chan;Ha, Kyoochul
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.4
    • /
    • pp.31-40
    • /
    • 2015
  • Various types of inorganic and organic colloids are present in natural water including groundwater. Previous studies showed that Fe, Mn and Al are colloid-forming elements and dissolved concentrations can be erroneous for these elements if water samples are not properly filtered. Dissolved concentrations of elements including Ca, Na, Mg, K, Fe, Mn, Si and Al in groundwater from alluvial and bedrock aquifers, and surface water near Nakdong River were determined to evaluate effects of colloids on dissolved concentrations in natural water samples using various pore sizes of filters. Groundwater is mostly anoxic and have elevated concentrations of Fe and Mn, which provides a unique opportunity to observe the effects of colloids on dissolved concentrations of colloid-forming elements. Membrane filters with four kinds of pore sizes of 1000 nm, 450 nm, 100 nm, and 15 nm were used for filtration of water samples. Concentrations of dissolved concentrations in each filtrate did not show significant differences from 1000 nm to 100 nm. However, concentrations of all elements considered were decreased in the filtrates obtained using 15 nm pore size filters by 10 to 15% compared to those using 450 nm except for bedrock groundwater. Al in surface water showed a distinct linear decrease with the decrease of filter pore sizes. These results showed that 100 nm pore size had little effect to remove colloidal particles in alluvial groundwater and surface water in our study. In contrast, significant concentration decreases in 15 nm pore size filtrates indicate that the presence of 15 to 100 nm colloidal particles may affect determination of dissolved concentrations of elements in natural water.

Hydrogeochemical Environmental Research in Nitrate Contamination in Alluvial Fan Area Groundwater in Tsukui, Central Japan (일본 츠꾸이 선상지 지하수의 질산성 질소 오염에 대한 수문지구화학적 연구)

  • Okazaki, Masanori;Ham, Young-Sik
    • Korean Journal of Ecology and Environment
    • /
    • v.37 no.4 s.109
    • /
    • pp.431-435
    • /
    • 2004
  • A nitrate-contaminated groundwater was hydrogeochemically investigated to estimate the factors controlling groundwater quality in an alluvial fan area. Even though monthly groundwater levels increased with monthly rainfalls, the monthly $NO_3^--N$ concentrations in groundwater showed a small variation, mostly exceeding a maximum contaminant level of 10 mg $L^{-1}$ in environmental quality standards for groundwater during 2003. The 2003 annual groundwater recharge was 1,730 mm =20,056 mm-18,326 mm. Where 20,056 mm and 18,326 mm are annual sum of daily increase and decrease in ground water level. However, the annual sum of increase in ground water level (20,056 mm) was approximately 10 times higher than annual rainfall. Moreover, the annual sum of daily ground water level decrease (-18,326mm) showed that a large amount of groundwater was discharged with $NO_3^-$-contamination. Hydrogeochemically, a large amount of groundwater input and output through the alluvial fan area were observed after rainfall with a considerably high concentration of $NO_3^-$. Consequently, this alluvial fan area including forest area reflects on the evidence under the condition of 'nitrogen excess' or 'nitrogen saturation'. In addition, such a large amount of groundwater outflow can cause environmental damage in surface water, associated with $NO_3^-$- contamination. This study also expects that this hydrogeochemical data will be useful for water management.