• Title/Summary/Keyword: All-solid-state battery

Search Result 57, Processing Time 0.023 seconds

PEO/PPC based Composite Solid Electrolyte for Room Temperature Operable All Solid-State Batteries (상온에서 작동되는 전고체전지 용 PEO/PPC 기반의 복합 고체 전해질)

  • Shin, Sohyeon;Kim, Sunghoon;Cho, Younghyun;Ahn, Wook
    • Journal of the Korean Electrochemical Society
    • /
    • v.25 no.3
    • /
    • pp.105-112
    • /
    • 2022
  • For the commercialization of all-solid-state batteries, it is essential to develop a solid electrolyte that can be operable at room temperature, and it is necessary to manufacture all-solid-state batteries by adopting materials with high ionic conductivity. Therefore, in order to increase the ionic conductivity of the existing oxide-based solid, Li7La3Zr2O12 (LLZO) doped with heterogeneous elements was used as a filler material (Al and Nb-LLZO). An electrolyte with garnet-type inorganic filler doped was prepared. The binary metal element and the polymer mixture of poly(ethylene oxide)/poly(propylene carbonate) (PEO/PPC) (1:1) are uniformly manufactured at a ratio of 1:2.4, The electrochemical performance was tested at room temperature and 60 ℃ to verify room temperature operability of the all-solid-state battery. The prepared composite electrolyte shows improved ionic conductivity derived from co-doping of the binary elements, and the PPC helps to improve the ionic conductivity, thereby increasing the capacity of all-solid-state batteries at room temperature as well as 60 ℃. It was confirmed that the capacity retention rate was improved.

Modeling, Preparation, and Elemental Doping of Li7La3Zr2O12 Garnet-Type Solid Electrolytes: A Review

  • Cao, Shiyu;Song, Shangbin;Xiang, Xing;Hu, Qing;Zhang, Chi;Xia, Ziwen;Xu, Yinghui;Zha, Wenping;Li, Junyang;Gonzale, Paulina Mercedes;Han, Young-Hwan;Chen, Fei
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.2
    • /
    • pp.111-129
    • /
    • 2019
  • Recently, all-solid-state batteries (ASSBs) have attracted increasing interest owing to their higher energy density and safety. As the core material of ASSBs, the characteristics of the solid electrolyte largely determine the performance of the battery. Thus far, a variety of inorganic solid electrolytes have been studied, including the NASICON-type, LISICON-type, perovskite-type, garnet-type, glassy solid electrolyte, and so on. The garnet Li7La3Zr2O12 (LLZO) solid electrolyte is one of the most promising candidates because of its excellent comprehensively electrochemical performance. Both, experiments and theoretical calculations, show that cubic LLZO has high room-temperature ionic conductivity and good chemical stability while contacting with the lithium anode and most of the cathode materials. In this paper, the crystal structure, Li-ion transport mechanism, preparation method, and element doping of LLZO are introduced in detail based on the research progress in recent years. Then, the development prospects and challenges of LLZO as applied to ASSBs are discussed.

Evaluation of Electrochemical Properties of Amorphous LLZO Solid Electrolyte Through Li2O Co-Sputtering (Li2O Co-Sputtering을 통한 비정질 LLZO 고체전해질의 전기화학 특성 평가)

  • Park, Jun-Seob;Kim, Jong-Heon;Kim, Hyun-Suk
    • Korean Journal of Materials Research
    • /
    • v.31 no.11
    • /
    • pp.614-618
    • /
    • 2021
  • As the size of market for electric vehicles and energy storage systems grows, the demand for lithium-ion batteries (LIBs) is increasing. Currently, commercial LIBs are fabricated with liquid electrolytes, which have some safety issues such as low chemical stability, which can cause ignition of fire. As a substitute for liquid electrolytes, solid electrolytes are now being extensively studied. However, solid electrolytes have disadvantages of low ionic conductivity and high resistance at interface between electrode and electrolyte. In this study, Li7La3Zr2O12 (LLZO), one of the best ion conducting materials among oxide based solid electrolytes, is fabricated through RF-sputtering and various electrochemical properties are analyzed. Moreover, the electrochemical properties of LLZO are found to significantly improve with co-sputtered Li2O. An all-solid thin film battery is fabricated by introducing a thin film solid electrolyte and an Li4Ti5O12 (LTO) cathode; resulting electrochemical properties are also analyzed. The LLZO/Li2O (60W) sample shows a very good performance in ionic conductivity of 7.3×10-8 S/cm, with improvement in c-rate and stable cycle performance.

A Review on the Wet Chemical Synthesis of Sulfide Solid Electrolytes for All-Solid-State Li Batteries (전고체전지용 황화물 고체전해질 습식 합성기술 동향)

  • Ha, Yoon-Cheol
    • Journal of the Korean Electrochemical Society
    • /
    • v.25 no.3
    • /
    • pp.95-104
    • /
    • 2022
  • The development of non-flammable all-solid-state batteries (ASSLBs) has become a hot topic due to the known drawbacks of commercial lithium-ion batteries. As the possibility of applying sulfide solid electrolytes (SSEs) for electric vehicle batteries increases, efforts for the low-cost mass-production are actively underway. Until now, most studies have used high-energy mechanical milling, which is easy to control composition and impurities and can reduce the process time. Through this, various SSEs that exceed the Li+ conductivity of liquid electrolytes have been reported, and expectations for the realization of ASSLBs are growing. However, the high-energy mechanical milling method has disadvantages in obtaining the same physical properties when mass-produced, and in controlling the particle size or shape, so that physical properties deteriorate during the full process. On the other hand, wet chemical synthesis technology, which has advantages in mass production and low price, is still in the initial exploration stage. In this technology, SSEs are mainly manufactured through producing a particle-type, solution-type, or mixed-type precursor, but a clear understanding of the reaction mechanism hasn't been made yet. In this review, wet chemical synthesis technologies for SSEs are summarized regarding the reaction mechanism between the raw materials in the solvent.

Li-Ion Traction Batteries for All-Electric Vehicle (전 전기자동차용 리튬이온 이차전지 기술동향)

  • Cho, Mann;Nah, Do-Baek;Kil, Sang-Chul;Kim, Sang-Woo
    • Journal of Energy Engineering
    • /
    • v.20 no.2
    • /
    • pp.109-122
    • /
    • 2011
  • The production capacity of EV models should be sufficient to achieve the goal of one million EVs by 2015. Large-Format lithium-ion battery are expected to find a prominent role as ideal electrochemical storage systems in traction power train for sustainable vehicles such as all-electric vehicles. This review focuses first on the present status of production lithium-ion battery technology and cooperative relations of between battery and EV makers, then on its near future development.

High-Rate Blended Cathode with Mixed Morphology for All-Solid-State Li-ion Batteries

  • Heo, Kookjin;Im, Jehong;Lee, Jeong-Seon;Jo, Jeonggeon;Kim, Seokhun;Kim, Jaekook;Lim, Jinsub
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.3
    • /
    • pp.282-290
    • /
    • 2020
  • In this article, we report the effect of blended cathode materials on the performance of all-solid-state lithium-ion batteries (ASLBs) with oxide-based organic/inorganic hybrid electrolytes. LiFePO4 material is good candidates as cathode material in PEO-based solid electrolytes because of their low operating potential of 3.4 V; however, LiFePO4 suffers from low electric conductivity and low Li ion diffusion rate across the LiFePO4/FePO4 interface. Particularly, monoclinic Li3V2(PO4)3 (LVP) is a well-known high-power-density cathode material due to its rapid ionic diffusion properties. Therefore, the structure, cycling stability, and rate performance of the blended LiFePO4/Li3V2(PO4)3 cathode material in ASLBs with oxidebased inorganic/organic-hybrid electrolytes are investigated by using powder X-ray diffraction analysis, field-emission scanning electron microscopy, Brunauer-Emmett-Teller sorption experiments, electrochemical impedance spectroscopy, and galvanostatic measurements.

Evaluation of Thermal Diffusivity and Electrochemical Properties of LiAlH4-PVDF Electrolyte Composites (LiAlH4-PVDF 전해질 복합체의 열확산 및 전기화학적 특성평가)

  • HWANG, JUNE-HYEON;HONG, TAE-WHAN
    • Journal of Hydrogen and New Energy
    • /
    • v.33 no.5
    • /
    • pp.574-582
    • /
    • 2022
  • A lithium-ion battery exhibits high energy density but has many limitations due to safety issues. Currently, as a solution for this, research on solid state batteries is attracting attention and is actively being conducted. Among the solid electrolytes, sulfide-based solid electrolytes are receiving much attention with high ion conductivity, but there is a limit to commercialization due to the relatively high price of lithium sulfide, which is a precursor material. This study focused on the possibility of relatively inexpensive and light lithium hydride and conducted an experiment on it. In order to analyze the characteristics of LiAlH4, ion conductivity and thermal stability were measured, and a composites mixed with PVDF, a representative polymer electrolyte, was synthesized to confirm a change in characteristics. And metallurgical changes in the material were performed through XRD, SEM, and BET analysis, and ion conductivity and thermal stability were measured by EIS and LFA methods. As a result, Li3AlH6 having ion conductivity higher than LiAlH4 is formed by the synthesis of composite materials, and thus ion conductivity is slightly improved, but thermal stability is rapidly degraded due to structural irregularity.

Li-free Thin-Film Batteries with Structural Configuration of Pt/LiCoO2/LiPON/Cu and Pt/LiCoO2/LiPON/LiCoO2/Cu (Pt/LiCoO2/LiPON/Cu와 Pt/LiCoO2/LiPON/LiCoO2/Cu 구조를 갖는 Li-free 박막전지)

  • Shin, Min-Seon;Kim, Tae-Yeon;Lee, Sung-Man
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.4
    • /
    • pp.243-248
    • /
    • 2018
  • All solid state thin film batteries with two types of cell structure, Pt / $LiCoO_2$ / LiPON / Cu and Pt / $LiCoO_2$ / LiPON / $LiCoO_2$ / Cu, are prepared and their electrochemical performances are investigated to evaluate the effect of $LiCoO_2$ interlayer at the interface of LiPON / Cu. The crystallinity of the deposited $LiCoO_2$ thin films is confirmed by XRD and Raman analysis. The crystalline $LiCoO_2$ cathode thin film is obtained and $LiCoO_2$ as the interlayer appears to be amorphous. The surface morphology of Cu current collector after cycling of the batteries is observed by AFM. The presence of a 10 nm-thick layer of $LiCoO_2$ at the interface of LiPON / Cu enhances the interfacial adhesion and reduces the interfacial resistance. As a result, Li plating / stripping at the interface of LiPON / Cu during charge/discharge reaction takes place more uniformly on Cu current collector, while without the interlayer of $LiCoO_2$ at the interface of LiPON / Cu, the Li plating / stripping is localized on current collector. The thin film batteries with the interlayer of $LiCoO_2$ at the interface of LiPON / Cu exhibits enhanced initial coulombic efficiency, reversible capacity and cycling stability. The thickness of the anode current collector Cu also appears to be crucial for electrochemical performances of all solid state thin film batteries.

Li3PO4 Coated Li[Ni0.75Co0.1Mn0.15]O2 Cathode for All-Solid-State Batteries Based on Sulfide Electrolyte

  • Lee, Joo Young;Park, Yong Joon
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.407-415
    • /
    • 2022
  • Surface coating of cathodes is an essential process for all-solid-state batteries (ASSBs) based on sulfide electrolytes as it efficiently suppresses interfacial reactions between oxide cathodes and sulfide electrolytes. Based on computational calculations, Li3PO4 has been suggested as a promising coating material because of its higher stability with sulfides and its optimal ionic conductivity. However, it has hardly been applied to the coating of ASSBs due to the absence of a suitable coating process, including the selection of source material that is compatible with ASSBs. In this study, polyphosphoric acid (PPA) and (NH4)2HPO4 were used as source materials for preparing a Li3PO4 coating for ASSBs, and the properties of the coating layer and coated cathodes were compared. The Li3PO4 layer fabricated using the (NH4)2HPO4 source was rough and inhomogeneous, which is not suitable for the protection of the cathodes. Moreover, the water-based coating solution with the (NH4)2HPO4 source can deteriorate the electrochemical performance of high-Ni cathodes that are vulnerable to water. In contrast, when an alcohol-based solvent was used, the PPA source enabled the formation of a thin and homogeneous coating layer on the cathode surface. As a consequence, the ASSBs containing the Li3PO4-coated cathode prepared by the PPA source exhibited significantly enhanced discharge and rate capabilities compared to ASSBs containing a pristine cathode or Li3PO4-coated cathode prepared by the (NH4)2HPO4 source.

Effect of Calcination Temperature on Ionic Conductivity of All-solid State Battery Electrolytes (하소 온도가 전고체 전지 전해질의 이온전도도에 미치는 영향)

  • Yu Taek Hong;Ji Min Im;Ki Sang Baek;Chan Gyu Kim;Seung Wook Baek;Jung Hyun Kim
    • New & Renewable Energy
    • /
    • v.20 no.2
    • /
    • pp.71-81
    • /
    • 2024
  • In this study, the electrochemical properties of garnet-structured all-solid-state battery electrolytes (Li6.4La3Zr1.4Ta0.6O12, hereafter LLZTO) were assessed by altering the calcination temperature, while maintaining a consistent sintering duration. Among the various heat treatment conditions employed for sample fabrication, the '700_1100' condition, denoting a calcination temperature of 700℃ and a sintering temperature of 1100℃, resulted in the most exceptional ionic conductivity of 4.89 × 10-4 S/cm and a relative density of 88.72% for the LLZTO material. This is attributed to the low calcination temperature of 700℃, leading to reduced grain size and enhanced cohesiveness, thus resulting in a higher sintered density. In addition, a microstructure similar to the typical sintering characteristics observed in Spark Plasma Sintering (SPS) methods was identified in the SEM analysis results under the '700_1100' condition. Consequently, the '700_1100' heat treatment condition was deemed to optimal choice for enhancing ionic conductivity.