High-Rate Blended Cathode with Mixed Morphology for All-Solid-State Li-ion Batteries

  • Heo, Kookjin (Korea Institute of Industrial Technology (KITECH)) ;
  • Im, Jehong (Korea Institute of Industrial Technology (KITECH)) ;
  • Lee, Jeong-Seon (Korea Institute of Industrial Technology (KITECH)) ;
  • Jo, Jeonggeon (Department of Materials Science and Engineering, Chonnam National University) ;
  • Kim, Seokhun (Department of Materials Science and Engineering, Chonnam National University) ;
  • Kim, Jaekook (Department of Materials Science and Engineering, Chonnam National University) ;
  • Lim, Jinsub (Korea Institute of Industrial Technology (KITECH))
  • Received : 2019.11.20
  • Accepted : 2020.03.16
  • Published : 2020.08.31


In this article, we report the effect of blended cathode materials on the performance of all-solid-state lithium-ion batteries (ASLBs) with oxide-based organic/inorganic hybrid electrolytes. LiFePO4 material is good candidates as cathode material in PEO-based solid electrolytes because of their low operating potential of 3.4 V; however, LiFePO4 suffers from low electric conductivity and low Li ion diffusion rate across the LiFePO4/FePO4 interface. Particularly, monoclinic Li3V2(PO4)3 (LVP) is a well-known high-power-density cathode material due to its rapid ionic diffusion properties. Therefore, the structure, cycling stability, and rate performance of the blended LiFePO4/Li3V2(PO4)3 cathode material in ASLBs with oxidebased inorganic/organic-hybrid electrolytes are investigated by using powder X-ray diffraction analysis, field-emission scanning electron microscopy, Brunauer-Emmett-Teller sorption experiments, electrochemical impedance spectroscopy, and galvanostatic measurements.


  1. K. Heo, J. S. Lee, H. S. Kim, J. Kim and J. Lim, J. Electrochem, Soc., 2017, 164(12), A2398-2402.
  2. M. Armand and J.M. Tarascon, Nature, 2008, 451(7179), 652-657.
  3. K. Takada, Acta Mater, 2013, 61(3), 759-770.
  4. B. L. Ellis, K. T. Lee, and L. F. Nazar, Chem. Mater., 2010, 22(3), 691-714.
  5. W. Zhanga, J. Niea, F. Lic, Z.L. Wanga, and C. Sun, Nano Energy, 2018, 45, 413-419.
  6. F. Croce, G.B. Appetecchi, L. Persi, and B. Scrosati, Nature, 1998, 394(6692), 456-458.
  7. T. Stergiopoulos, I.M. Arabatzis, G. Katsaros, and P. Falaras, Nano Lett., 2002, 2(11), 1259-1261.
  8. Z. Jiang, B. Carroll and K. M. Abraham, Electrochim. Acta, 1997, 42(17), 2667-2677.
  9. X.Ben, W. Zhang, N. Chen and C. Sun, J. Phys. Chem., 2018, 122(18), 9852-9858.
  10. P. Raghavan, J. Manuel, X. Zhao, D.S. Kim, J.H. Ahn, and C. Nah, J. Power Sources, 2011, 196(16), 6742-6749.
  11. H.S. Jeong, D.W. Kim, Y.U. Jeong, and S.Y. Lee, J. Power Sources, 2010, 195(18), 6116-6121.
  12. S.W. Choi, S.M. Jo, W.S. Lee, and Y.R. Kim, Adv. Mater., 2003, 15(23), 2027-2032.
  13. Y. Wang and W.H. Zhong, ChemElectroChem, 2015, 2(1), 22-36.
  14. J.H. Choi, C.H. Lee, J.H. Yu, C.H. Doh, and S.M. Lee, J. Power Sources, 2015, 274, 458-463.
  15. D. Zhang, L. Zhang, K. Yang, H. Wang, C. Yu, D. Xu, B. Xu, and L. M. Wang, ACS Appl. Mater. Interfaces, 2017, 9(42), 36886-36896.
  16. D. H. Kim, M. Y. Kim, S. H. Yang, H, M. Ryu, H. Y. Jung, H. J. Ban, S. J. Park, J. Lim, and H. S. Kim, J. Ind. Eng. Chem., 2019, 71, 445-451.
  17. K. Hanai, K. Kusagawa, M. Ueno, T. Kobayashi, N. Imanishi, A. Hirano, Y. Takeda, and O. Yamamoto, J. Power Sources, 2010, 195(9), 2956-2960.
  18. F. Croce, F.S. Fiory, L. Persi, and B. Scrosati, Electrochem. Solid State Lett., 2001, 4(8), A121-A123.
  19. S. Kim, J, Song, B, Sambandam, S. Kim, J. Jo, S. Park, S. Baek, and J. Kim, Mater. Today Commun., 2017, 10, 105-111.
  20. J. Kang, V. Mathew, J. Gim, S. Kim, J. Song, W. B. Im, J. Han, J. Y. Lee, and J. Kim, Sci. Rep.,2014, 4, 4047.
  21. J. Jo, J. Gim, J. Song, Y. Kim, V. Mathew, S. Kim, S. Kim, S. Park, J. P. Baboo, and J. Kim, Ceram. Int., 2017, 43(5), 4288-4294.
  22. J. Lim, V. Mathew, K. Kim, J. Moon, and J. Kim, J. Electrochem. Soc., 2011, 158(6), A736-A740.
  23. K.-S. Lee, S.-T. Myung, D.-W. Kim, and Y.-K. Sun, J. Power Sources, 2011, 196(16), 6974-6977.
  24. A. Klein, P. Axmann, and M. Wohlfahrt-Mehrens, J. Power Sources, 2016, 309, 169-177.
  25. K.G. Gallagher, S.-H. Kang, S.U. Park, and S.Y. Han, J. Power Sources, 2011, 196, 9702-9707.
  26. C. Heubner, T. Leibmann, M. Schneider and A. Michaelis, Electrochim. Acta, 2018, 269, 745-760.
  27. L. Liu, W. Xiao, M. Chen, H. Chen, Y. Cui, G. Zeng, Y. Chen, X. Ke, Z. Guo, Z. Shi, H. Zahng and S. Chou, J. Alloy and Compds, 2017, 719, 281-287.
  28. Q.X. Du, Z.F. Tang, X.H. Ma, Y. Zang, X. Sun, Y. Shao, Z.Y. Wen, and C.H. Chen, Solid State Ionics, 2015, 279, 11-17.
  29. J.S. Lim, J.H. Gim, J.J. Song, D.T. Nguyen, S.J. Kim, J.G. Jo, V. Mathew, and J.K. Kim, J. Power Sources, 2016, 304, 354-359.