• Title/Summary/Keyword: All-One 다항식

Search Result 30, Processing Time 0.021 seconds

An Efficient Bit-Parallel Normal Basis Multiplier for GF(2$^m$) Fields Defined by All-One Polynomials (All-One 다항식에 의한 정의된 유한체 GF(2$^m$) 상의 효율적인 Bit-Parallel 정규기저 곱셈기)

  • 장용희;권용진
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.04a
    • /
    • pp.272-274
    • /
    • 2003
  • 유한체 GF(2$^{m}$ ) 상의 산술 연산 중 곱셈 연산의 효율적인 구현은 암호이론 분야의 어플리케이션에서 매우 중요하다. 본 논문에서는 All-One 다항식에 의해 정의된 GF(2$^{m}$ ) 상의 효율적인 Bit-Parallel 정규기저 곱셈기를 제안한다. 게이트 및 시간 면에서 본 논문의 곱셈기의 complexity는 이전에 제안된 같은 종류의 곱셈기 보다 낮거나 동일하다. 그리고 본 논문의 곱셈기는 이전 곱셈기 보다 더 모듈적이어서 VLSI 구현에 적합하다.

  • PDF

Efficient bit-parallel multiplier for GF(2$^m$) defined by irreducible all-one polynomials (기약인 all-one 다항식에 의해 정의된 GF(2$^m$)에서의 효율적인 비트-병렬 곱셈기)

  • Chang Ku-Young;Park Sun-Mi;Hong Do-Won
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.7 s.349
    • /
    • pp.115-121
    • /
    • 2006
  • The efficiency of the multiplier largely depends on the representation of finite filed elements such as normal basis, polynomial basis, dual basis, and redundant representation, and so on. In particular, the redundant representation is attractive since it can simply implement squaring and modular reduction. In this paper, we propose an efficient bit-parallel multiplier for GF(2m) defined by an irreducible all-one polynomial using a redundant representation. We modify the well-known multiplication method which was proposed by Karatsuba to improve the efficiency of the proposed bit-parallel multiplier. As a result, the proposed multiplier has a lower space complexity compared to the previously known multipliers using all-one polynomials. On the other hand, its time complexity is similar to the previously proposed ones.

The Design of $GF(2^m)$ Multiplier using Multiplexer and AOP (Multiplexer와AOP를 적응한 $GF(2^m)$ 상의 승산기 설계)

  • 변기영;황종학;김흥수
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.40 no.3
    • /
    • pp.145-151
    • /
    • 2003
  • This study focuses on the hardware implementation of fast and low-complexity multiplier over GF(2$^{m}$ ). Finite field multiplication can be realized in two steps: polynomial multiplication and modular reduction using the irreducible polynomial and we will treat both operation, separately. Polynomial multiplicative operation in this Paper is based on the Permestzi's algorithm, and irreducible polynomial is defined AOP. The realization of the proposed GF(2$^{m}$ ) multipleker-based multiplier scheme is compared to existing multiplier designs in terms of circuit complexity and operation delay time. Proposed multiplier obtained have low circuit complexity and delay time, and the interconnections of the circuit are regular, well-suited for VLSI realization.

Design of a Parallel Multiplier for Irreducible Polynomials with All Non-zero Coefficients over GF($p^m$) (GF($p^m$)상에서 모든 항의 계수가 0이 아닌 기약다항식에 대한 병렬 승산기의 설계)

  • Park, Seung-Yong;Hwang, Jong-Hak;Kim, Heung-Soo
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.39 no.4
    • /
    • pp.36-42
    • /
    • 2002
  • In this paper, we proposed a multiplicative algorithm for two polynomials with all non-zero coefficients over finite field GF($P^m$). Using the proposed multiplicative algorithm, we constructed the multiplier of modular architecture with parallel in-output. The proposed multiplier is composed of $(m+1)^2$ identical cells, each cell consists of one mod(p) additional gate and one mod(p) multiplicative gate. Proposed multiplier need one mod(p) multiplicative gate delay time and m mod(p) additional gate delay time not clock. Also, our architecture is regular and possesses the property of modularity, therefore well-suited for VLSI implementation.

Design of LFSR Multipliers for Public-key Cryptosystem (공개키 암호 시스템을 위한 LFSR 곱셈기 설계)

  • 이진호;김현성
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.9 no.1
    • /
    • pp.43-48
    • /
    • 2004
  • This paper presents new architectures based on the linear feedback shia resister architecture over GF(2m). First we design a modular multiplier and a modular squarer, then propose an architecture by combing the multiplier and the squarer. All architectures use an irreducible AOP (All One Polynomial) as a modulus, which has the properties of all coefficients with '1'. The proposed architectures have lower hardware complexity than previous architectures. They could be. Therefore it is useful for implementing the exponentiation architecture, which is the con operation in public-key cryptosystems.

  • PDF

Modular Multiplier based on Cellular Automata Over $GF(2^m)$ (셀룰라 오토마타를 이용한 $GF(2^m)$ 상의 곱셈기)

  • 이형목;김현성;전준철;유기영
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.31 no.1_2
    • /
    • pp.112-117
    • /
    • 2004
  • In this paper, we propose a suitable multiplication architecture for cellular automata in a finite field $GF(2^m)$. Proposed least significant bit first multiplier is based on irreducible all one Polynomial, and has a latency of (m+1) and a critical path of $ 1-D_{AND}+1-D{XOR}$.Specially it is efficient for implementing VLSI architecture and has potential for use as a basic architecture for division, exponentiation and inverses since it is a parallel structure with regularity and modularity. Moreover our architecture can be used as a basic architecture for well-known public-key information service in $GF(2^m)$ such as Diffie-Hellman key exchange protocol, Digital Signature Algorithm and ElGamal cryptosystem.

A Study on Polynomial Pre-ditsortion Technique Using PAPR Reduction Methode (OFDM 시스템에서 PAPR 감소기법을 적용한 다항식 사전왜곡 기법에 관한 연구)

  • Park, Bee-ho;Kim, Wan-tae;Cho, Sung-joon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.160-163
    • /
    • 2009
  • HPA is one of the most essential device in wireless communication systems. However, because of nonlinear characteristic of HPA transmit signal is distorted with both amplitude and phase, this distortion leads to deepening adjacent channel interference. So a technique to change the nonlinear characteristic with linear characteristic is needed. In this paper, Among all techniques, we adopts a polynomial pre-distortion technique. Pre-distorted signal by pre-distorter has opposite characteristic with HPA. In result, the signal passed through pre-distorter and HPA has linear characteristic. But the accuracy of opposite characteristic of HPA is decreased at near portion of saturation point. So we improve the accuracy of opposite characteristic of HPA by using PAPR reduction method. In this paper, an adaptive polynomial pre-distortion technique is introduced to counterbalance the nonlinear characteristic of the transmit power amplifier, and a PAPR reduction method is introduced to increase efficiency of polynomial pre-distorter.

  • PDF

Design of an LFSR Multiplier with Low Area Complexity (효율적인 공간 복잡도의 LFSR 곱셈기 설계)

  • 정재형;이성운;김현성
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.8 no.3
    • /
    • pp.85-90
    • /
    • 2003
  • This paper proposes a modular multiplier based on LFSR (Linear Feedback Shift Register) architecture with efficient area complexity over GF(2/sup m/). At first, we examine the modular exponentiation algorithm and propose it's architecture, which is basic module for public-key cryptosystems. Furthermore, this paper proposes on efficient modular multiplier as a basic architecture for the modular exponentiation. The multiplier uses AOP (All One Polynomial) as an irreducible polynomial, which has the properties of all coefficients with '1 ' and has a more efficient hardware complexity compared to existing architectures.

  • PDF

Modified Multi-bit Shifting Algorithm in Multiplication Inversion Problems (개선된 역수연산에서의 멀티 쉬프팅 알고리즘)

  • Jang, In-Joo;Yoo, Hyeong-Seon
    • The Journal of Society for e-Business Studies
    • /
    • v.11 no.2
    • /
    • pp.1-11
    • /
    • 2006
  • This paper proposes an efficient inversion algorithm for Galois field GF(2n) by using a modified multi-bit shifting method based on the Montgomery algorithm. It is well known that the efficiency of arithmetic algorithms depends on the basis and many foregoing papers use either polynomial or optimal normal basis. An inversion algorithm, which modifies a multi-bit shifting based on the Montgomery algorithm, is studied. Trinomials and AOPs (all-one polynomials) are tested to calculate the inverse. It is shown that the suggested inversion algorithm reduces the computation time up to 26 % of the forgoing multi-bit shifting algorithm. The modified algorithm can be applied in various applications and is easy to implement.

  • PDF

Fast Elliptic Curve Cryptosystems using Anomalous Bases over Finite Fields (유한체위에서의 근점기저를 이용한 고속 타원곡선 암호법)

  • Kim, Yong-Tae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.3
    • /
    • pp.387-393
    • /
    • 2015
  • In Electronic Commerce and Secret Communication based on ECC over finite field, if the sender and the receiver use different basis of finite fields, then the time of communication should always be delayed. In this paper, we analyze the number of bases-transformations needed for Electronic Signature in Electronic Commerce and Secret Communication based on ECC over finite field between H/W and S/W implementation systems and introduce the anomalous basis of finite fields using AOP which is efficient for H/W, S/W implementation systems without bases-transformations for Electronic Commerce and Secret Communication. And then we propose a new multiplier based on the anomalous basis of finite fields using AOP which reduces the running time by 25% than that of the multiplier based on finite fields using trinomial with polynomial bases.