• 제목/요약/키워드: All-One 다항식

검색결과 30건 처리시간 0.026초

All-One 다항식에 의한 정의된 유한체 GF(2$^m$) 상의 효율적인 Bit-Parallel 정규기저 곱셈기 (An Efficient Bit-Parallel Normal Basis Multiplier for GF(2$^m$) Fields Defined by All-One Polynomials)

  • 장용희;권용진
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2003년도 봄 학술발표논문집 Vol.30 No.1 (A)
    • /
    • pp.272-274
    • /
    • 2003
  • 유한체 GF(2$^{m}$ ) 상의 산술 연산 중 곱셈 연산의 효율적인 구현은 암호이론 분야의 어플리케이션에서 매우 중요하다. 본 논문에서는 All-One 다항식에 의해 정의된 GF(2$^{m}$ ) 상의 효율적인 Bit-Parallel 정규기저 곱셈기를 제안한다. 게이트 및 시간 면에서 본 논문의 곱셈기의 complexity는 이전에 제안된 같은 종류의 곱셈기 보다 낮거나 동일하다. 그리고 본 논문의 곱셈기는 이전 곱셈기 보다 더 모듈적이어서 VLSI 구현에 적합하다.

  • PDF

기약인 all-one 다항식에 의해 정의된 GF(2$^m$)에서의 효율적인 비트-병렬 곱셈기 (Efficient bit-parallel multiplier for GF(2$^m$) defined by irreducible all-one polynomials)

  • 장구영;박선미;홍도원
    • 대한전자공학회논문지TC
    • /
    • 제43권7호
    • /
    • pp.115-121
    • /
    • 2006
  • 곱셈기의 효율성은 정규 기저(normal basis), 다항식 기저(polynomial basis), 쌍대 기저(dual basis), 여분 표현(redundant representation) 등과 같은 유한체 원소의 표현 방법에 주로 의존한다. 특히 여분 표현에서의 제곱 및 모듈로 감산(modular reduction)은 단순한 방법에 의해 효율적으로 수행될 수 있기 때문에, 여분 표현은 흥미로운 유한체 표현 방법이다. 본 논문은 여분 표현을 사용한 기약인 all-one 다항식에 의해 정의된 GF(Zm)에서의 효율적인 비트-병렬 곱셈기를 제안한다. 또한 제안된 비트-병렬 곱셈기의 효율성을 향상시키기 위해, Karatsuba에 의해 제안된 잘 알려진 곱셈 방법을 변형한다. 결과로써, 제안된 곱셈기는 all-one 다항식을 사용한 기존의 알려진 곱셈기들과 비교해 적은 공간 복잡도(space complexity)를 가지는 반면에, 제안된 곱셈기의 시간 복잡도(time complexity)는 기존의 곱셈기와 유사하다.

Multiplexer와AOP를 적응한 $GF(2^m)$ 상의 승산기 설계 (The Design of $GF(2^m)$ Multiplier using Multiplexer and AOP)

  • 변기영;황종학;김흥수
    • 전자공학회논문지SC
    • /
    • 제40권3호
    • /
    • pp.145-151
    • /
    • 2003
  • 본 논문에서는 고속의 연산동작과 낮은 회로 복잡도를 갖는 새로운 GF(2/sup m/)상의 승산기를 제안한다. 유한체 연산은 다항식 승산과 기약다항식을 적용한 모듈러 연산에 의해 전개되며, 본 논문에서는 이 두 과정을 분리하여 다루었다. 다항식 승산연산은 Permestzi의 기법을 토대로 전개하였고 기약다항식은 AOP로 하였다. 멀티플렉서를 사용하여 GF(2/sup m/)상의 승산회로를 구성하였고, 회로 복잡도와 지연시간을 타 논문과 비교하였다. 제안된 승산기는 낮은 회로 복잡도와 지연시간을 보이며, 회로의 구성이 정규성을 가지므로 VLSI 구현에 적합하다.

GF($p^m$)상에서 모든 항의 계수가 0이 아닌 기약다항식에 대한 병렬 승산기의 설계 (Design of a Parallel Multiplier for Irreducible Polynomials with All Non-zero Coefficients over GF($p^m$))

  • 박승용;황종학;김흥수
    • 전자공학회논문지SC
    • /
    • 제39권4호
    • /
    • pp.36-42
    • /
    • 2002
  • 본 논문에서는 유한체 GF($P^m$)상에서 모든 항의 계수가 이 아닌 두 다항식의 승산 알고리즘을 제시하였다. 제시된 승산 알고리즘을 이용하여 모듈 구조의 병렬 입-출력 승산기를 구성하였다. 제시된 승산기는 $(m+1)^2$개의 동일한 셀로 구성되었으며, 각각의 셀은 1개의 mod(p) 가산 게이트와 1개의 mod(p) 승산 게이트로 구성되었다. 본 논문에서 제시된 승산기는 클럭이 필요하지 않고 m개의 mod(p) 가산 게이트 지연시간과 1개의 mod(p) 승산 게이트 소자 지연시간만을 필요로 한다. 또한, 제시된 승산기는 규칙성과 셀 배열에 의한 모듈성을 가지므로 VLSI 회로 실현에 적합할 것이다.

공개키 암호 시스템을 위한 LFSR 곱셈기 설계 (Design of LFSR Multipliers for Public-key Cryptosystem)

  • 이진호;김현성
    • 한국산업정보학회논문지
    • /
    • 제9권1호
    • /
    • pp.43-48
    • /
    • 2004
  • 본 논문에서는 GF(2m)상에서 Linear Feedback Shift Register 구조기반의 새로운 구조를 제안한다. 먼저 모듈러 곱셈기와 제곱기를 제안하고, 이를 기반으로 곱셈과 제곱을 동시에 수행할 수 있는 구조를 설계한다. 제안된 구조는 기약다항식으로 모든 계수가 1인 속성의 All One Polynomial 을 이용한다. 제안된 구조는 구조복잡도면에서 기존의 구조들보다 훨씬 효율적이다. 제안된 곱셈기는 공개키 암호의 핵심이 되는 지수기의 구현을 위한 효율적인 기본구조로 사용될 수 있다.

  • PDF

셀룰라 오토마타를 이용한 $GF(2^m)$ 상의 곱셈기 (Modular Multiplier based on Cellular Automata Over $GF(2^m)$)

  • 이형목;김현성;전준철;유기영
    • 한국정보과학회논문지:시스템및이론
    • /
    • 제31권1_2호
    • /
    • pp.112-117
    • /
    • 2004
  • 본 논문에서는 유한 체 $GF(2^m)$상에서 셀룰라 오토마타 (Cellular Automata)의 구조에 적합한 곱셈기 구조를 제안한다. 제안된 LSB 우선 곱셈 구조는 AOP(All One Polynomial)를 기약 다항식으로 사용하며, m+1의 지연시간과 $ 1-D_{AND}+1-D{XOR}$의 임계경로를 갖는다. 특히 정규성, 모듈성, 병렬성을 가지기 때문에 VLSI구현에 효율적이고 나눗셈기, 지수기 및 역원기를 설계하는 데 기본 구조로 사용될 수 있다 또한, 이 구조는 유한 체 상에서 Diffie-Hellman 키 교환 프로토콜, 디지털 서명 알고리즘, 및 ElGamal 암호화와 같이 잘 알려진 공개키 정보 보호 서비스를 위한 기본 구조로 사용될 수 있다.

OFDM 시스템에서 PAPR 감소기법을 적용한 다항식 사전왜곡 기법에 관한 연구 (A Study on Polynomial Pre-ditsortion Technique Using PAPR Reduction Methode)

  • 박비호;김완태;조성준
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2009년도 추계학술대회
    • /
    • pp.160-163
    • /
    • 2009
  • HPA(High Power Amplifier)는 무선통신 시스템에서 필수적으로 요구되는 요소 중의 하나다. 그러나 전력 증폭기는 비선형 특성을 가지고 있으며 신호의 비선형 왜곡을 유발 시키고 인접채널 간섭을 심화시켜 시스템의 효율을 떨어뜨린다. 이러한 문제점을 해결하기 위해 많은 선형화 기법들이 제시되어왔다. 다항식 사전왜곡 기법은 증폭기로 입력되는 신호가 미리 증폭기의 역 특성을 갖도록 하는 기법으로 다항식을 통하여 증폭기를 모델링하기 때문에 수렴 속도가 빠르고 다른 기법들에 비해 좋은 성능을 보인다. 하지만 다항식으로 역 비선형 특성을 구할 경우, 증폭기의 포화영역에서 역 비선형 특성이 거의 무한대가 되어야 하기 때문에 선형화기의 성능이 크게 떨어진다. 본 논문에서는 이러한 문제점을 해결하기 위하여 PAPR(Peak-to-Average Power Ratio) 기법을 적용하여 다항식 사전왜곡 기법의 성능을 향상 시켰다.

  • PDF

효율적인 공간 복잡도의 LFSR 곱셈기 설계 (Design of an LFSR Multiplier with Low Area Complexity)

  • 정재형;이성운;김현성
    • 한국산업정보학회논문지
    • /
    • 제8권3호
    • /
    • pp.85-90
    • /
    • 2003
  • 본 논문에서는 GF(2$^{m}$ ) 상에서 효율적인 공간 복잡도를 가진 LFSR(Linear Feedback Shift Register) 구조 기반의 모듈러 곱셈기를 제안한다. 먼저, 공개키 암호화 시스템의 기본 연산인 모듈러 지수승을 위한 지수승 알고리즘을 살펴보고 이를 위한 기본 구조를 제안한다. 특히, 본 논문은 이러한 지수기를 설계하기 위한 기녈 구조로서 효율적인 모듈러 곱셈기를 제안한다. 제안된 구조는 기약다항식으로 모든 계수가 1인 속성의 AOP(All One Polynomial)를 이용하며 구조복잡도 면에서 기존의 구조들보다 훨씬 효율적이다.

  • PDF

개선된 역수연산에서의 멀티 쉬프팅 알고리즘 (Modified Multi-bit Shifting Algorithm in Multiplication Inversion Problems)

  • 장인주;유형선
    • 한국전자거래학회지
    • /
    • 제11권2호
    • /
    • pp.1-11
    • /
    • 2006
  • 본 논문에서는 멀티 쉬프팅 기법을 이용한 효율적인 유한체의 역수 연산 알고리즘을 제안하고 있다. 연산 알고리즘의 효율성은 사용하는 기저에 따라 영향이 있음이 많은 선행 연구를 통해 알려져 왔으며, 보편적으로 다항식 기저와 최적 다항식 기저를 사용하여 연구하였다. 본 연구에서는 몽고메리 알고리즘에 바탕을 둔 멀티비트 쉬프팅 기법을 수정하고 구현하였다. 역수 연산을 수행하기 위해 본 연구에서 사용한 기약 다항식타입은 AOP와 3항식 이며, 수행 결과 26%까지의 성능향상을 보였다. 본 논문에서 제안한 알고리즘은 구현이 쉽고, 다양한 분야에서 응용이 가능하다.

  • PDF

유한체위에서의 근점기저를 이용한 고속 타원곡선 암호법 (Fast Elliptic Curve Cryptosystems using Anomalous Bases over Finite Fields)

  • 김용태
    • 한국전자통신학회논문지
    • /
    • 제10권3호
    • /
    • pp.387-393
    • /
    • 2015
  • 유한체위에서 ECC를 기반으로 하는 전자상거래 또는 비밀통신에서 송수신자가 서로 다른 기저를 사용하는 경우에는 기저변환으로 인한 통신지연이 발생하게 된다. 본 논문에서는 서로 다른 기저를 사용하는 H/W와 S/W 구현 시스템 사이의 비밀통신 또는 전자서명에 소요되는 기저변환의 횟수를 분석하여, 그로 인한 통신지연을 제거하기 위해서, All One Polynomial(AOP)을 사용하는 유한체위에서 하드웨어와 소프트웨어 구현 모두에 효과적이면서, 기저변환이 필요 없는 근점 기저를 소개하였다. 제안하는 근점기저를 사용한 곱셈기의 H/W 구현 결과, 삼항식과 다항식기저를 사용하는 곱셈기보다 연산 시간이 약 25% 감소하였다.