• 제목/요약/키워드: Alkaline water splitting

검색결과 10건 처리시간 0.022초

알칼라인 수전해 산소 발생 반응을 위한 NiCo2O4/Ni foam 전극 제조 및 특성 평가 (Fabrication and Characterization of NiCo2O4/Ni Foam Electrode for Oxygen Evolution Reaction in Alkaline Water Splitting)

  • 권민솔;고재성;이예솔;이성민;유지수;이효원;송성호;이동주
    • 한국분말재료학회지
    • /
    • 제29권5호
    • /
    • pp.411-417
    • /
    • 2022
  • Environmental issues such as global warming due to fossil fuel use are now major worldwide concerns, and interest in renewable and clean energy is growing. Of the various types of renewable energy, green hydrogen energy has recently attracted attention because of its eco-friendly and high-energy density. Electrochemical water splitting is considered a pollution-free means of producing clean hydrogen and oxygen and in large quantities. The development of non-noble electrocatalysts with low cost and high performance in water splitting has also attracted considerable attention. In this study, we successfully synthesized a NiCo2O4/NF electrode for an oxygen evolution reaction in alkaline water splitting using a hydrothermal method, which was followed by post-heat treatment. The effects of heat treatment on the electrochemical performance of the electrodes were evaluated under different heat-treatment conditions. The optimized NCO/NF-300 electrode showed an overpotential of 416 mV at a high current density of 50 mA/cm2 and a low Tafel slope (49.06 mV dec-1). It also showed excellent stability (due to the large surface area) and the lowest charge transfer resistance (12.59 Ω). The results suggested that our noble-metal free electrodes have great potential for use in developing alkaline electrolysis systems.

Heat-treatment effects on oxygen evolution reaction of nickel-cobalt layered double hydroxide

  • Lee, Jung-Il;Ko, Daehyeon;Mhin, Sungwook;Ryu, Jeong Ho
    • 한국결정성장학회지
    • /
    • 제31권3호
    • /
    • pp.143-148
    • /
    • 2021
  • Alkaline oxygen evolution reaction (OER) electrocatalysts have been widely studied for improving the efficiency and green hydrogen production through electrochemical water splitting. Transition metal-based electrocatalysts have emerged as promising materials that can significantly reduce the hydrogen production costs. Among the available electrocatalysts, transition metal-based layered double hydroxides (LDHs) have demonstrated outstanding OER performance owing to the abundant active sites and favorable adsorption-desorption energies for OER intermediates. Currently, cobalt doped nickel LDHs (NiCo LDHs) are regarded as the benchmark electrocatalyst for alkaline OER, primarily owing to the physicochemical synergetic effects between Ni and Co. We report effects of heat-treatment of the as-grown NiCo LDH on electrocatalytic activities in a temperature range from 250 to 400℃. Electrocatalytic OER properties were analysed by linear sweep voltammetry (LSV) and electrochemical impedance spectroscopy (EIS). The heat-treatment temperature was found to play a crucial role in catalytic activity. The optimum heat-treatment temperature was discussed with respect to their OER performance.

GaN를 이용한 광전기화학적 물분해 (Photoelectrochemical Water Splitting Using GaN)

  • 오일환
    • 전기화학회지
    • /
    • 제17권1호
    • /
    • pp.1-6
    • /
    • 2014
  • 본 총설은 질화 갈륨(GaN)을 이용한 광전기화학적 물분해 연구에 대해 정리하였다. GaN는 화학적으로 안정하고 에너지 띠간격 조절이 자유롭다는 장점으로 최근 물분해를 위한 새로운 광전극 물질로 연구되고 있다. 다른 화합물 반도체 물질은 강산 혹은 강염기 전해액에 의해 쉽게 부식되기 때문에 광산화전극(photoanode)으로는 사용이 어려운 반면, n형 GaN는 뛰어난 안정성 덕분에 산화 분위기의 산소 발생 전극으로도 활용이 가능하다. 또한, 최근에는 p형 GaN을 환원전극으로 이용한 광전극에 대한 연구도 보고되었다. GaN 물질이 실제 응용되기 위해 필요한 과제들에 대해 다루었다.

수전해용 Nd1.5Ba1.5CoFeMnOx 전기촉매 특성 분석 (Electrocatalytic properties of Nd1.5Ba1.5CoFeMnOx for water splitting)

  • 이호준;조경원;류정호
    • 한국결정성장학회지
    • /
    • 제30권1호
    • /
    • pp.17-20
    • /
    • 2020
  • 고성능의 산소생성반응(OER)과 수소생성반응(HER) 전기촉매 개발은 수전해 시스템의 상용화에 있어서 매우 중요하게 여겨진다. 특히 HER에 비하여 OER이 상대적으로 높은 과전압을 가지기 때문에, OER의 과전압을 효과적으로 낮추는 촉매를 개발하는 것이 매우 중요하다. 본 연구에서는, 매우 간단한 공정을 통하여 triple perovskite 구조의 Nd1.5Ba1.5CoFeMnOx 전기촉매를 합성하였으며 그 특성을 분석하였다. 합성된 Nd1.5Ba1.5CoFeMnOx는 OER 뿐만 아니라 HER에서도 우수한 특성을 나타내었다. 이러한 결과를 통하여 높은 결정성을 가지는 triple perovskite 구조가 간단한 연소 합성법(combustion synthetic method)을 통하여 합성될 수 있으며 알칼리 전해질 하에서 매우 우수한 촉매특성을 보이는 것을 확인할 수 있었다. 따라서, 높은 OER, HER 특성을 보이는 Nd1.5Ba1.5CoFeMnOx triple perovskite 촉매는 수전해 시스템의 상용화에 큰 기여를 할 수 있을 것으로 판단된다.

몰리브덴 산화물이 도핑된 티타늄 나노튜브전극의 수소 발생 반응 연구 (Study of Hydrogen Evolution Reaction by Molybdenum Oxide Doped TiO2 Nanotubes)

  • 오기석;유현석;이기백;최진섭
    • 한국표면공학회지
    • /
    • 제49권6호
    • /
    • pp.521-529
    • /
    • 2016
  • In this study, titanium nanotubes, prepared by anodization method, showing high surface and strong chemical stability in acidic and basic media, have been employed for the application to the electrodes for water splitting in KOH solution. Due to its high polarization resistance of $TiO_2$ itself, proper catalysts are essentially required to reduce overpotentials for water oxidation and reduction. Most of academic literature showed noble metal catalysts for foreign dopants in $TiO_2$ electrodes. From commercialization point of view, screening of low-cost catalyst is important. Herein, we propose molybdenum oxide as low-cost catalysts among various catalysts tested in the experiments, which exhibits the highest performance for hydrogen evolution reaction in highly alkaline solution. We showed that molybdenum oxide doped electrode can be operated in extreme acidic and basic conditions as well.

A Review of Industrially Developed Components and Operation Conditions for Anion Exchange Membrane Water Electrolysis

  • Lim, Ahyoun;Cho, Min Kyung;Lee, So Young;Kim, Hyoung-Juhn;Yoo, Sung Jong;Sung, Yung-Eun;Jang, Jong Hyun;Park, Hyun S.
    • Journal of Electrochemical Science and Technology
    • /
    • 제8권4호
    • /
    • pp.265-273
    • /
    • 2017
  • Solid-state alkaline water electrolysis is a promising method for producing hydrogen using renewable energy sources such as wind and solar power. Despite active investigations of component development for anion exchange membrane water electrolysis (AEMWE), understanding of the device performance remains insufficient for the commercialization of AEMWE. The study of assembled AEMWE devices is essential to validate the activity and stability of developed catalysts and electrolyte membranes, as well as the dependence of the performance on the device operating conditions. Herein, we review the development of catalysts and membranes reported by different AEMWE companies such as ACTA S.p.A. and Proton OnSite and device operating conditions that significantly affect the AEMWE performance. For example, $CuCoO_x$ and $LiCoO_2$ have been studied as oxygen evolution catalysts by Acta S.p.A and Proton OnSite, respectively. Anion exchange membranes based on polyethylene and polysulfone are also investigated for use as electrolyte membranes in AEMWE devices. In addition, operation factors, including temperature, electrolyte concentration and acidity, and solution feed methods, are reviewed in terms of their influence on the AEMWE performance. The reaction rate of water splitting generally increases with increase in operating temperature because of the facilitated kinetics and higher ion conductivity. The effect of solution feeding configuration on the AEMWE performance is explained, with a brief discussion on current AEMWE performance and device durability.

Ti Mesh 처리 촉매전극을 이용한 고체고분자 전해질 전기분해 특성연구 (A Study on the PEM Electrolysis Characteristics Using Ti Mesh Coated with Electrocatalysts)

  • 심규성;김연순;김종원;한상도
    • 한국수소및신에너지학회논문집
    • /
    • 제7권1호
    • /
    • pp.29-37
    • /
    • 1996
  • Alkaline water electrolysis has been commercialized as the only large-scale method for a long time to produce hydrogen and the technology is superior to other methods such as photochemical, thermochemical water splitting, and thermal decomposition method in view of efficiency and related technical problem. However, such conventional electrolyzer do not have high electric efficiency and productivity to apply to large scale hydrogen production for energy or chemical feedstocks. Solid polymer electrolyte water electrolysis using a perfluorocation exchange membrane as an $H^+$ ion conductor is considered to be a promising method, because of capability for operating at high current densities and low cell voltages. So, this is a good technology for the storage of electricity generated by photovoltaic power plants, wind generators and other energy conversion systems. One of the most important R&D topics in electrolyser is how to minimize cell voltage and maximize current density in order to increase the productivity of the electrolyzer. A commercialized technology is the hot press method which the film type electrocatalyst is hot-pressed to soild polymer membrane in order to eliminate the contact resistance. Various technologies, electrocatalyst formed over Nafion membrane surface by means of nonelectrolytic plating process, porous sintered metal(titanium powder) or titanium mesh coated with electrocatalyst, have been studied for preparation of membrane-electrocatalyst composites. In this study some experiments have been conducted at a solid polymer electrolyte water electrolyzer, which consisted of single cell stack with an electrode area of $25cm^2$ in a unipolar arrangement using titanium mesh coated with electrocatalyst.

  • PDF

Mechanical and durability properties of fly ash and slag based geopolymer concrete

  • Kurtoglu, Ahmet Emin;Alzeebaree, Radhwan;Aljumaili, Omar;Nis, Anil;Gulsan, Mehmet Eren;Humur, Ghassan;Cevik, Abdulkadir
    • Advances in concrete construction
    • /
    • 제6권4호
    • /
    • pp.345-362
    • /
    • 2018
  • In this paper, mechanical and short-term durability properties of fly ash and slag based geopolymer concretes (FAGPC-SGPC) were investigated. The alkaline solution was prepared with a mixture of sodium silicate solution ($Na_2SiO_3$) and sodium hydroxide solution (NaOH) for geopolymer concretes. Ordinary Portland Cement (OPC) concrete was also produced for comparison. Main objective of the study was to examine the usability of geopolymer concretes instead of the ordinary Portland cement concrete for structural use. In addition to this, this study was aimed to make a contribution to standardization process of the geopolymer concretes in the construction industry. For this purpose; SGPC, FAGPC and OPC specimens were exposed to sulfuric acid ($H_2SO_4$), magnesium sulfate ($MgSO_4$) and sea water (NaCl) solutions with concentrations of 5%, 5% and 3.5%, respectively. Visual inspection and weight change of the specimens were evaluated in terms of durability aspects. For the mechanical aspects; compression, splitting tensile and flexural strength tests were conducted before and after the chemical attacks to investigate the residual mechanical strengths of geopolymer concretes under chemical attacks. Results indicated that SGPC (100% slag) is stronger and durable than the FAGPC due to more stable and strong cross-linked alumina-silicate polymer structure. In addition, FAGPC specimens (100% fly ash) showed better durability resistance than the OPC specimens. However, FAGPC specimens (100% fly ash) demonstrated lower mechanical performance as compared to OPC specimens due to low reactivity of fly ash particles, low amount of calcium and more porous structure. Among the chemical environments, sulfuric acid ($H_2SO_4$) was most dangerous environment for all concrete types.

SEBS 블록 공중합체를 기반으로 한 수전해용 음이온 교환막에 대한 총설 (A Review on SEBS Block Copolymer based Anion Exchange Membranes for Water Electrolysis)

  • 김지은;박현정;최영우;이재훈
    • 멤브레인
    • /
    • 제32권5호
    • /
    • pp.283-291
    • /
    • 2022
  • 재생에너지의 보급과 기후변화를 대응하기 위한 해결책으로 수소에너지에 대한 관심이 늘어나고 있다. 수소는 미이용 전력을 대용량 장주기로 저장하기에 가장 적합한 수단이며 이러한 수소를 생산하는 기술 중 수전해는 물에 전기에너지를 인가하여 수소를 생산하는 친환경적 수소생산 기술로 알려져 있다. 수전해의 구성 요소 중 분리막은 음극과 양극을 물리적으로 분리할 뿐만 아니라 생성되는 수소와 산소의 섞임 현상을 방지하며 이온의 전달을 가능하게 하는 복합적인 역할을 수행한다. 특히 기존의 수전해 기술들의 단점을 보완할 수 있는 차세대 음이온 교환막 수전해에서의 핵심은 우수한 음이온 교환막을 확보하는 것이다. 높은 이온 전도성과 알칼리 환경에서 우수한 내구성을 동시에 가지려는 많은 연구들이 진행되고 있으며 다양한 소재에 대한 탐색이 이루어지고 있다. 본 총설에서는 상용 블록 공중합체인 Polystyrene-b-poly(ethylene-co-butylene)-b-polystyrene (SEBS)를 기반으로 하는 음이온 교환막에 대한 연구에 대해 살펴보며 최신 연구 동향과 앞으로 나아가야할 점에 대해 논하고자 한다.

MOF-Derived FeCo-Based Layered Double Hydroxides for Oxygen Evolution Reaction

  • Fang Zheng;Mayur A. Gaikwad;Jin Hyeok Kim
    • 한국재료학회지
    • /
    • 제33권10호
    • /
    • pp.377-384
    • /
    • 2023
  • Exploring earth-abundant, highly effective and stable electrocatalysts for electrochemical water splitting is urgent and essential to the development of hydrogen (H2) energy technology. Iron-cobalt layered double hydroxide (FeCo-LDH) has been widely used as an electrocatalystfor OER due to its facile synthesis, tunable components, and low cost. However, LDH synthesized by the traditional hydrothermal method tends to easily agglomerate, resulting in an unstable structure that can change or dissolve in an alkaline solution. Therefore, studying the real active phase is highly significant in the design of electrochemical electrode materials. Here, metal-organic frameworks (MOFs) are used as template precursors to derive FeCo-LDH from different iron sources. Iron salts with different anions have a significant impact on the morphology and charge transfer properties of the resulting materials. FeCo-LDH synthesized from iron sulfate solution (FeCo-LDH-SO4) exhibits a hybrid structure of nanosheets and nanowires, quite different from other electrocatalysts that were synthesized from iron chloride and iron nitrate solutions. The final FeCo-LDH-SO4 had an overpotential of 247 mV with a low Tafel-slope of 60.6 mV dec-1 at a current density of 10 mA cm-2 and delivered a long-term stability of 40 h for the OER. This work provides an innovative and feasible strategy to construct efficient electrocatalysts.