References
- M. A. Pena, J. P. Gomez, and J. L. G. Fierro, New catalytic routes for syngas and hydrogen production, Appl. Catal,. A 144, (1996) 7-57. https://doi.org/10.1016/0926-860X(96)00108-1
- S. Singh, S. Jain, V. PS, A. K. Tiwari, M. R. Nouni, J. K. Pandey, and S. Goel, Hydrogen: A sustainable fuel for future of the transport sector, Renew. Sustainable Energy Rev. 51 (2015) 623-633. https://doi.org/10.1016/j.rser.2015.06.040
- J. D. Holladay, J. Hu, D. L. King, and Y. Wang, An overview of hydrogen production technologies, Catal. Today 139 (2009) 244-260. https://doi.org/10.1016/j.cattod.2008.08.039
- J. Rossmeisl, A. Logadottir, J. K. Norskov, Electrolysis of water on (oxidized) metal surfaces, Chem. Phys. 319 (2005) 178-184. https://doi.org/10.1016/j.chemphys.2005.05.038
- S. Minagar, C. C. Berndt, J. Wang, E. Ivanova, and C. Wen, A review of the application of anodization for the fabrication of nanotubes on metal implant surfaces, Acta biomaterialia 8 (2012) 2875-2888. https://doi.org/10.1016/j.actbio.2012.04.005
- S. B. Patel, A. Hamlekhan, D. Royhman, A. Butt, J. Yuan, T. Shokuhfar, C. Sukotjo,,M. T. Mathew, G. Jursich, and C. G. Takoudis, Enhancing surface characteristics of ti-6al-4v for bio-implants using integrated anodization and thermal oxidation, J Mater. Chem., B 2 (2014) 3597-3608. https://doi.org/10.1039/c3tb21731k
- Z. Wang, L. Zhou, and X.W. Lou, Metal oxide hollow nanostructures for Lithium-ion batteries, Adv. Mater. 24 (2012) 1903-1911. https://doi.org/10.1002/adma.201200469
-
J. M. Macak, H. Tsuchiya, A. Ghicov, K. Yasuda, R. Hahn, S. Bauer, and P. Schmuki,
$TiO_2$ nanotubes: Self-organized electrochemical formation, properties and applications, Curr. Opin. Solid State Mater. Sci. 11 (2007) 3-18. https://doi.org/10.1016/j.cossms.2007.08.004 -
Y. Jo, I. Jung, I. Lee, J. Choi and Y. Tak, Fabrication of through-hole
$TiO_2$ nanotubes by potential shock, Electrochem, Commun. 12 (2010) 616-619. https://doi.org/10.1016/j.elecom.2010.02.013 -
H. Yoo, Y.-W, Choi, and J. Choi, Ruthenium oxide-doped
$TiO_2$ nanotubes by Single-step anodization for water-oxidation applications, ChemCatChem 7 (2015) 643-647. https://doi.org/10.1002/cctc.201402787 -
S. Kim, H. Yoo, O. Rhee, and J. Choi, Doping of pt into anodic
$TiO_2$ nanotubes for water oxidation: Underpotential shock method in Cl-solution, J. Phys. Chem. C 119, (2015) 21497-21503. . https://doi.org/10.1021/acs.jpcc.5b05790 -
M. Seong, S. Kim, H. Yoo and J. Choi, Doping of anodic nanotubular
$TiO_2$ electrodes with MnO2 for use as catalysts in water oxidation, Catal. Today 260 (2016) 135-139. https://doi.org/10.1016/j.cattod.2015.06.006 -
D. Lee, Y. -W. Choi, Y. -S. Na, S. -S. Choi, D.- W. Park, and J. Choi,
$Fe_2O_3$ nanopowders prepared by a thermal plasma process for water oxidation, Mater. Res. Bull. 68 (2015) 221-226. https://doi.org/10.1016/j.materresbull.2015.03.045 -
Y. -W. Choi, S. Kim, M. Seong, H. Yoo and J. Choi,
$NH_4$ -doped anodic$WO_3$ prepared through anodization and subsequent$NH_4$ OH treatment for water splitting, Appl. Surf. Sci. 324 (2015) 414-418. https://doi.org/10.1016/j.apsusc.2014.10.059 -
W. F. Zhang, Y. L. He, M. S. Zhang, Z. Yin, and Q. Chen. Raman scattering study on anatase
$TiO_2$ nanocrystals, J. Phys. D: Appl. Phys. 33 (2000) 912-916. https://doi.org/10.1088/0022-3727/33/8/305 -
D. Su, J. Wang, Y. Tang, C. Liu, L. Liu, and X. Han, Constructing
$WO_3$ /$TiO_2$ composite structure towards sufficient use of solar energy, Chem. Commun. 47 (2011) 4231-4233. https://doi.org/10.1039/c0cc04770h - A. Cimino and B. A. De Angelis, The application of X-Ray photoelectron spectroscopy to the study of molybdenum oxides and supported molybdenum oxide catalysts, J. Catal., 36 (1975) 11-22. https://doi.org/10.1016/0021-9517(75)90004-4
-
L. Ran, D. zhao, X. Gao, and L. Yin, Highly crystalline Ti-doped
$SnO_2$ hollow structured photocatalyst with enhanced photocatalytic activity for degradation of organic dyes, CrystEngComm 17 (2015) 4225-4237. https://doi.org/10.1039/C5CE00184F - P. K. Khatri, M. Aila, J. Porwal, S. Kaul, and S. L. Jain, Industrial resin "INDION 130", modified with vanadyl cations as highly efficient heterogeneous catalyst for epoxidation of fatty compounds with TBHP as oxidant, New J. Chem. 39 (2015) 5960-5965. https://doi.org/10.1039/C5NJ00744E
-
B. E. Conway, B. V. Tilak, Interfacial processes involving electrocatalytic evolution and oxidation of
$H_2$ , and the role of chemisorbed H, Electrochim. Acta 47 (2012) 3571-3594 - E. Skulason, V. Tripkovic, M. E. Bjoketun, S. Gudmundsdotir, G. Karlberg, J. Rossmeisl, T. Bligaard, H. Josson,§, and J. K. Norskov, Modeling the electrochemical hydrogen oxidation and evolution reactions on the basis of density functional theory calculations, J. Phys. Chem. C 114 (2010) 18182-18197 https://doi.org/10.1021/jp1048887
-
Z. Luo, R. Miao, T. D. Huan, I. M. Mosa, A. S. Poyraz, W. Zhong, J. E. Cloud, D. A. Kriz, S. Thanneeru, J. He, Y. Zhang, R. Ramprasad, and S. L. Suib, Mesoporous
$MoO_{3-x}$ material as an efficient electrocatalyst for hydrogen evolution reactions, Adv. Energy Mater. 6 (2016) doi:10.1002/aenm.201600528 -
X. K. Hu, T. T. Qian, Z. T. Song, J. R. Huang, R. Cao and J. Q. Xiao, Comparative study on MoO3 and
$H_xMoO_3$ nanobelts: structure and electric transport, Chem. Mater. 20 (2008) 1527-1533 https://doi.org/10.1021/cm702942y -
L. Zheng, Y. Xu, D. Jin, and Y. Xie, Novel metastable hexagonal
$MoO_3$ nanobelts: synthesis, photochromic, and electrochromic properties, Chem. Mater. 21 (2009) 5681-5690. https://doi.org/10.1021/cm9023887 -
H. Sinaim, D. J. Ham, J. S. Lee, A. Phuruangrat, S. Thongtem, and T. Thongtem, Free-polymer contorlling morpholgy of
$\alpha$ -$MoO_3$ nanobelts by a facile hydrothermal synthesis, their electrochemistry for hydrogen evolution reactions and optical properties, J. Alloy. Comp. 516 (2012) 172-178 https://doi.org/10.1016/j.jallcom.2011.12.024 -
J. Rajeswari, P. S. Kishore, B. Viswanathan, and T.K. Varadarajan, Facile hydrogen evolution reaction on
$WO_3$ nanorods, Nanoscale Res. Lett. 2 (2007) 496-503 https://doi.org/10.1007/s11671-007-9088-y - Y. Liu, W. E. Mustain, Evalutation of ungsten carbide as the electrocatalyst support for platinum hydrogen evolution/oxidation catalysts, Int. J. Hydrogen Energy 37 (2012) 8929-8938 https://doi.org/10.1016/j.ijhydene.2012.03.044
-
D. Voiry, H. Yamaguchi, J. Li, R. Silva, D.C.B. Alves, T. Fujita, M. Chen, T. Asefa, V. B. Shenoy, G. Eda, and M. Chhowalla, Enhanced catalytic activity in strained chemically exfoliated
$WS_2$ nanosheets for hydrogen evolution, Nat. Mater. 12(2013) 850-855 https://doi.org/10.1038/nmat3700 - M. A. Lukowski, A. S. Daniel, C. R. English, F. Meng, A. Forticaux, R. J. Hamers, and S. Jin, Highly active hydrogen evolution catalysis from metallic WS2 nanosheets, Energy Environ. Sci. 7 (2014) 2608-2613 https://doi.org/10.1039/C4EE01329H