• Title/Summary/Keyword: Algorithm animation

Search Result 145, Processing Time 0.031 seconds

Systolic Array Simulator Construction for the Back-propagation ANN (역전파 ANN의 시스톨릭 어레이를 위한 시뮬레이터 개발)

  • 박기현;전상윤
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.5 no.3
    • /
    • pp.117-124
    • /
    • 2000
  • A systolic array is a parallel processing system which consists of processing elements of basic computation capabilities, connected with regular and local communication lines. It has been known that a systolic array is on of effective systems to solve complicated communication problems occurred between densely connected neurons on ANN(Artificial Neural Network). In this paper, a systolic array simulator for the back-propagation ANN, which automatically constructs the proper systolic array for a given number of neurons of the ANN, is designed and constructed. With animation techniques of the simulators, it is easy for users to be able to examine the execution of the back-propagation algorithm on the designed systolic array step by step. Moreover the simulator can perform forward and backward operations of the back-propagation algorithm either in sequence or in parallel on the designed systolic array. Parallel execution can be performed by feeding continuous input patterns and by executing bidirectional propagations on all of processing elements of a systolic array at the same time.

  • PDF

An Effective Method for Generating Images Using Genetic Algorithm (유전자 알고리즘을 이용한 효과적인 영상 생성 기법)

  • Cha, Joo Hyoung;Woo, Young Woon;Lee, Imgeun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.8
    • /
    • pp.896-902
    • /
    • 2019
  • In this paper, we proposed two methods to automatically generate color images similar to existing images using genetic algorithms. Experiments were performed on two different sizes($256{\times}256$, $512{\times}512$) of gray and color images using each of the proposed methods. Experimental results show that there are significant differences in the evolutionary performance of each technique in genetic modeling for image generation. In the results, evolving the whole image into sub-images evolves much more effective than modeling and evolving it into a single gene, and the generated images are much more sophisticated. Therefore, we could find that gene modeling, selection method, crossover method and mutation rate, should be carefully decided in order to generate an image similar to the existing image in the future, or to learn quickly and naturally to generate an image synthesized from different images.

A Study on Ontology of Digital Photo Image Focused on a Simulacre Concept of Deleuze & Baudrillard (디지털 사진 이미지의 존재론에 관한 연구 -들뢰즈와 보드리야르의 시뮬라크르 개념을 중심으로)

  • Gwon, Oh-sang
    • Cartoon and Animation Studies
    • /
    • s.51
    • /
    • pp.391-411
    • /
    • 2018
  • The purpose of this thesis is to examine ontology of digital photo image based on a Simulacre concept of Gilles Deleuze & Jean Baudrillard. Traditionally, analog image follows the logic of reproduction with a similarity with original target. Therefore, visual reality of analog image is illuminated, interpreted, and described in a subjective viewpoint, but does not deviate from the interpreted reality. However, digital image does not exist physically but exists as information that is made of mathematical data, a digital algorithm. This digital image is that newness of every reproduction, that is, essence of subject 'once existing there' does not exist anymore, and does not instruct or reproduce an outside target. Therefore, digital image does not have the similarity and does not keep the index instruction ability anymore. It means that this digital image is converted into a virtual area, and this is not reproduction of already existing but display of not existing yet. This not-being of digital image changes understanding of reality, existence, and imagination. Now, dividing it into reality and imagination itself is meaningless, and this does not make digital image with technical improvement but is a new image that is basically completely different from existing image. Eventually, digital image of the day passes step to visualize an existent target, nonexistent things have been visualized, and reality operates virtually. It means that digital image does not reproduce our reality but reproduces other reality realistically. In other words, it is a virtual reproduction producing an image that is not related to a target, that is to say Simulacre. In the virtually simulated world, reality has an infinite possibility, and it is not a picture of the past and present and has a possibility as the infinite virtual that is not fixed, is infinitely mutable, and is not actualized yet.

Represented by the Color Image Emotion Emotional Attributes of Size, Quantification Algorithm (이미지의 색채 감성속성을 이용한 대표감성크기 정량화 알고리즘)

  • Lee, Yean-Ran
    • Cartoon and Animation Studies
    • /
    • s.39
    • /
    • pp.393-412
    • /
    • 2015
  • See and feel the emotion recognition is the image of a person variously changed according to the environment, personal disposition. Thus, the image recognition has been focused on the emotional sensibilities computer you want to control the number studies. However, existing emotional computing model is numbered and the objective is clearly insufficient measurement conditions. Thus, through quantifiable image Emotion Recognition and emotion computing, is a study of the situation requires an objective assessment scheme. In this paper, the sensitivity was represented by numbered sizes quantified according to the image recognition calculation emotion. So apply the principal attributes of the color image emotion recognition as a configuration parameter. In addition, in calculating the color sensitivity by applying a digital computing focused research. Image color emotion computing research approach is the color of emotion attribute, brightness, and saturation reflects the weighted according to importance to the emotional scores. And free-degree by applying the sensitivity point to the image sensitivity formula (X), the tone (Y-axis) is calculated as a number system. There pleasure degree (X-axis), the tension and position the position of the image point that the sensitivity of the emotional coordinate crossing (Y-axis). Image color coordinates by applying the core emotional effect of Russell (Core Affect) is based on the 16 main representatives emotion. Thus, the image recognition sensitivity and compares the number size. Depending on the magnitude of the sensitivity scores demonstrate this sensitivity must change. Compare the way the images are divided up the top five of emotion recognition emotion emotions associated with 16 representatives, and representatives analyzed the concentrated emotion sizes. Future studies are needed emotional computing method of calculation to be more similar sensibility and human emotion recognition.

Inductive Inverse Kinematics Algorithm for the Natural Posture Control (자연스러운 자세 제어를 위한 귀납적 역운동학 알고리즘)

  • Lee, Bum-Ro;Chung, Chin-Hyun
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.8 no.4
    • /
    • pp.367-375
    • /
    • 2002
  • Inverse kinematics is a very useful method for control]ing the posture of an articulated body. In most inverse kinematics processes, the major matter of concern is not the posture of an articulated body itself but the position and direction of the end effector. In some applications such as 3D character animations, however, it is more important to generate an overall natural posture for the character rather than place the end effector in the exact position. Indeed, when an animator wants to modify the posture of a human-like 3D character with many physical constraints, he has to undergo considerable trial-and-error to generate a realistic posture for the character. In this paper, the Inductive Inverse Kinematics(IIK) algorithm using a Uniform Posture Map(UPM) is proposed to control the posture of a human-like 3D character. The proposed algorithm quantizes human behaviors without distortion to generate a UPM, and then generates a natural posture by searching the UPM. If necessary, the resulting posture could be compensated with a traditional Cyclic Coordinate Descent (CCD). The proposed method could be applied to produce 3D-character animations based on the key frame method, 3D games and virtual reality.

Considerations for patient selection: Prepectoral versus subpectoral implant-based breast reconstruction

  • Yang, Jun Young;Kim, Chan Woo;Lee, Jang Won;Kim, Seung Ki;Lee, Seung Ah;Hwang, Euna
    • Archives of Plastic Surgery
    • /
    • v.46 no.6
    • /
    • pp.550-557
    • /
    • 2019
  • Background In recent years, breast implants have been frequently placed in the subcutaneous pocket, in the so-called prepectoral approach. We report our technique of prepectoral implant-based breast reconstruction (IBR), as well as its surgical and aesthetic outcomes, in comparison with subpectoral IBR. We also discuss relevant considerations and pitfalls in prepectoral IBR and suggest an algorithm for the selection of patients for IBR based on our experiences. Methods We performed 79 immediate breast reconstructions with a breast implant and an acellular dermal matrix (ADM) sling, of which 47 were subpectoral IBRs and 32 were prepectoral IBRs. Two-stage IBR was performed in 36 cases (20 subpectoral, 16 prepectoral), and direct-to-implant IBR in 43 cases (27 prepectoral, 16 subpectoral). The ADM sling supplemented the inferolateral side of the breast prosthesis in the subpectoral group and covered the entire anterior surface of the breast prosthesis in the prepectoral group. Results The postoperative pain score was much lower in the prepectoral group than in the subpectoral group (1.78 vs. 7.17). The incidence of seroma was higher in the prepectoral group (31.3% vs. 6.4%). Other postoperative complications, such as surgical site infection, flap necrosis, implant failure, and wound dehiscence, occurred at similar rates in both groups. Animation deformities developed in 8.5% of patients in the subpectoral group and rippling deformities were more common in the prepectoral group (21.9% vs. 12.8%). Conclusions The indications for prepectoral IBR include moderately-sized breasts with a thick well-vascularized mastectomy flap and concomitant bilateral breast reconstruction with prophylactic mastectomy.

Analysis of Caustics Effect for Photo-Realistic Rendering in 3D Data (3D Data의 사실적 렌더링을 위한 Caustics 효과 분석)

  • Kim Jong-Seo;You Kang-Soo;Kwak Hoon-Sung
    • The Journal of the Korea Contents Association
    • /
    • v.6 no.8
    • /
    • pp.175-183
    • /
    • 2006
  • In computer graphics, according as the rapid development of hardware can realize high-resolution image on the monitor, the more natural and accurate rendering skill is needed gradually, and the studies about high-level rendering algorithm are processing. There are two types in rendering skill. The one is photo-realistic rendering to realize accurate image like photos and the other is real-time rendering to realize rapid real-time render. This paper includes caustics expression about lights and materials of several photo-realistic rendering skills. First this paper analyzes how caustics is used and expressed in movies, and further realizes caustics effect using real renderer. This paper examines objective criterion and capability of plug-in through the objective experiment of renderer. Also this paper analyzes using environment on variables for caustics effect realization. The experimental results can be applied to many rendering works as useful data, and can be used as data to understand characteristic and capability.

  • PDF

An Example-Based Approach to the Synthesis of Rube Goldberg Machines (루브 골드버그 기계의 합성을위한 예제 기반 접근방법)

  • Lee, Kang Hoon
    • Journal of the Korea Computer Graphics Society
    • /
    • v.20 no.2
    • /
    • pp.25-32
    • /
    • 2014
  • We present an example-based approach to synthesizing physically simulated Rube Goldberg machines in which a series of rigid body elements are sequentially triggered and driven along the causal chain. Given a set of elements, our goal is to automatically instantiate and arrange those elements to meet the user-specified requirements including the start and end positions, and the boundary of movement. To do so, we first sample small-scale machines consisting of only a few elements randomly, and represent the connectivity between every pair of components as a graph structure. Searching over possible paths in this graph solves our problem by finding a path that can be unrolled to satisfy the given requirements, and then assembling components sequentially along the solution path. In order to ensure that the machine works precisely in a physically simulated environment, we finally elaborate the layout of assembled components by a simple greedy algorithm. We demonstrate the usefulness of our approach by displaying a large diversity of Rube Goldberg machines built with only five kinds of elements.

Avoiding Inter-Leg Collision for Data-Driven Control (데이터 기반보행 제어를 위한 다리 간 충돌 회피 기법)

  • Lee, Yoonsang
    • Journal of the Korea Computer Graphics Society
    • /
    • v.23 no.2
    • /
    • pp.23-27
    • /
    • 2017
  • We propose an inter-leg collision avoidance method that compensates the disadvantage of the data-driven biped control method. The data-driven biped control technique proposed by Lee et. al [1] sometimes generates the movement that the two legs intersect with each other while walking, which can not be realized in walking of a real person or a biped robot. The proposed method changes the angle of the swing hip so that the swing foot can move inward only after passing the stance foot. This process introduces an additional angle adjustment algorithm to avoid collisions with the stance leg to the original feedback rule of the stance hip. It generates a stable walking simulation without any inter-leg collisions, by adding minimal changes and additional calculations to the existing controller behavior.

Dynamic Reconstruction Algorithm of 3D Volumetric Models (3D 볼류메트릭 모델의 동적 복원 알고리즘)

  • Park, Byung-Seo;Kim, Dong-Wook;Seo, Young-Ho
    • Journal of Broadcast Engineering
    • /
    • v.27 no.2
    • /
    • pp.207-215
    • /
    • 2022
  • The latest volumetric technology's high geometrical accuracy and realism ensure a high degree of correspondence between the real object and the captured 3D model. Nevertheless, since the 3D model obtained in this way constitutes a sequence as a completely independent 3D model between frames, the consistency of the model surface structure (geometry) is not guaranteed for every frame, and the density of vertices is very high. It can be seen that the interconnection node (Edge) becomes very complicated. 3D models created using this technology are inherently different from models created in movie or video game production pipelines and are not suitable for direct use in applications such as real-time rendering, animation and simulation, and compression. In contrast, our method achieves consistency in the quality of the volumetric 3D model sequence by linking re-meshing, which ensures high consistency of the 3D model surface structure between frames and the gradual deformation and texture transfer through correspondence and matching of non-rigid surfaces. And It maintains the consistency of volumetric 3D model sequence quality and provides post-processing automation.