DOI QR코드

DOI QR Code

Avoiding Inter-Leg Collision for Data-Driven Control

데이터 기반보행 제어를 위한 다리 간 충돌 회피 기법

  • Received : 2017.03.22
  • Accepted : 2017.05.30
  • Published : 2017.06.01

Abstract

We propose an inter-leg collision avoidance method that compensates the disadvantage of the data-driven biped control method. The data-driven biped control technique proposed by Lee et. al [1] sometimes generates the movement that the two legs intersect with each other while walking, which can not be realized in walking of a real person or a biped robot. The proposed method changes the angle of the swing hip so that the swing foot can move inward only after passing the stance foot. This process introduces an additional angle adjustment algorithm to avoid collisions with the stance leg to the original feedback rule of the stance hip. It generates a stable walking simulation without any inter-leg collisions, by adding minimal changes and additional calculations to the existing controller behavior.

본 논문에서는 기존에 발표되었던 데이터 기반보행제어 기법의 단점을 보완하는 다리 간 충돌 회피 기법을 제안한다. 2010년에 제안된 Lee et. al. 의 데이터 기반 이족 보행 제어 기법 [1]은 경우에 따라 보행 중 두 다리가 서로 교차하는 동작을 만들어내기도 하는데, 이는 실제 사람 혹은 이족 보행 로봇의 보행에서는 실현될 수 없는 동작이다. 본 논문에서는 스윙 힙(swing hip)의 각도를 변경하는 피드백 규칙에 스탠스 레그 (stance leg)와의 충돌을 피할 수 있는 추가적인 각도조절을 도입하여 스윙 풋 (swing foot)이 스탠스 풋 (stance foot)을 지난 이후에만 스탠스 풋보다 안쪽으로 움직일 수 있도록 하는 알고리즘을 제안한다. 이를 통해 기존의 제어기 동작 방식에 최소한의 변경과 추가적인 계산만을 더하여 두 다리가 교차하지 않는 안정적인 보행 결과를 만들어 낼 수 있다.

Keywords

Acknowledgement

Supported by : 한국연구재단, 광운대학교

References

  1. Y. Lee, S. Kim, and J. Lee, "Data-driven biped control," ACM Trans. Graph. (SIGGRAPH 2010), vol. 29, no. 4, pp. 1-8, 2010.
  2. J. K. Hodgins,W. L.Wooten, D. C. Brogan, and J. F. O'Brien, "Animating human athletics," in SIGGRAPH, 1995, pp. 71-78.
  3. K. Yin, K. Loken, and M. van de Panne, "Simbicon: simple biped locomotion control," ACM Transactions on Graphics, vol. 26, no. 3, p. 105, 2007. https://doi.org/10.1145/1276377.1276509
  4. T. Kwon and J. Hodgins, "Control systems for human running using an inverted pendulum model and a reference motion capture sequence," in Proceedings of the 2010 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 2010, pp. 129-138.
  5. I. Mordatch, M. de Lasa, and A. Hertzmann, "Robust physicsbased locomotion using low-dimensional planning," ACM Transactions on Graphics, vol. 29, no. 4, p. 71, 2010. https://doi.org/10.1145/1778765.1778808
  6. S. Coros, P. Beaudoin, and M. v. d. Panne, "Generalized biped walking control," ACM Trans. Graph. (SIGGRAPH 2010), vol. 29, no. 4, pp. 1-9, 2010.
  7. Y. Ye and C. K. Liu, "Optimal feedback control for character animation using an abstract model," ACM Transactions on Graphics, vol. 29, no. 4, p. 74, 2010. https://doi.org/10.1145/1778765.1778811
  8. U. Muico, Y. Lee, J. Popovic, and Z. Popovic, "Contact-aware nonlinear control of dynamic characters," ACM Transactions on Graphics, vol. 28, no. 3, pp. 1-9, 2009.
  9. L. Liu, K. Yin, M. van de Panne, and B. Guo, "Terrain runner: control, parameterization, composition, and planning for highly dynamic motions," ACM Trans. Graph. (SIGGRAPH Asia 2012), vol. 31, no. 6, 2012.
  10. D. Han, J. Noh, X. Jin, J. S. Shin, and S. Y. Shin, "On-line real-time physics-based predictive motion control with balance recovery," Computer Graphics Forum, vol. 33, no. 2, pp. 245-254, 2014. https://doi.org/10.1111/cgf.12323
  11. L. Liu, M. van de Panne, and K. Yin, "Guided learning of control graphs for physics-based characters," ACM Transactions on Graphics, vol. 35, no. 3, 2016.
  12. J. M. Wang, D. J. Fleet, and A. Hertzmann, "Optimizing walking controllers for uncertain inputs and environments," ACM Trans. Graph. (SIGGRAPH 2010), vol. 29, no. 4, pp. 1-8, 2010.
  13. M. de Lasa, I. Mordatch, and A. Hertzmann, "Feature-based locomotion controllers," ACM Transactions on Graphics, vol. 29, no. 4, p. 131, 2010. https://doi.org/10.1145/1778765.1781157
  14. J.-c. Wu and Z. Popovic, "Terrain-adaptive bipedal locomotion control," ACM Transactions on Graphics, vol. 29, no. 4, p. 72, 2010.
  15. J. M. Wang, S. R. Hamner, S. L. Delp, and V. Koltun, "Optimizing locomotion controllers using biologically-based actuators and objectives," ACM Trans. Graph. (SIGGRAPH 2012), vol. 31, no. 4, 2012.
  16. T. Geijtenbeek, M. van de Panne, and A. F. van der Stappen, "Flexible muscle-based locomotion for bipedal creatures," ACM Trans. Graph. (SIGGRAPH Asia 2013), vol. 32, no. 6, 2013.
  17. I. Mordatch, J. M.Wang, E. Todorov, and V. Koltun, "Animating human lower limbs using contact-invariant optimization," ACM Trans. Graph. (SIGGRAPH Asia 2013), vol. 32, no. 6, 2013.
  18. Y. Lee, M. S. Park, T. Kwon, and J. Lee, "Locomotion Control for Many-muscle Humanoids," ACM Trans. Graph., vol. 33, no. 6, pp. 218:1-218:11, Nov. 2014.