• 제목/요약/키워드: Algorithm Development

검색결과 7,042건 처리시간 0.036초

이공계 대학 연구과제 특성 별 운영 형태 현황 (An analysis of operation status depending on the characteristics of R&D projects in Sciences and Engineering universities)

  • 이상숙;유인혁;김진희
    • 디지털융복합연구
    • /
    • 제20권4호
    • /
    • pp.93-100
    • /
    • 2022
  • 본 연구는 이공계 대학 연구과제 특성(단계 및 성격)별 R&D 운영 현황을 파악하여 향후 대학 R&D 지원 체계와 연구정책에 시사점을 제공하고자 하였다. 이에 본 연구는 2021년 10월 4일부터 약 5주간 국내 이공계 대학 R&D 수령인을 대상으로 온라인 설문을 진행한 후, Apriori 알고리즘을 활용하여 445명의 유효데이터를 분석하였다. 그 결과, 기초(원천)단계 연구 10개(일반적인 연구 6개, 도전적인 연구 4개), 응용단계 연구 6개(일반적인 연구 5개, 도전적인 연구 1개) 등 총 16개의 연관규칙이 도출되었다. 또한, 이공계 대학 R&D는 연구과제의 특성과 무관하게 정부(발주처) 혹은 공공기관(연구비결정권) 등의 주도로 운영되는 공통점이 나타났으며, 특히 응용연구의 특징(단계 및 성격)과 높은 연관성이 있었다. 기초(원천)단계연구의 경우, 연구자에게 연구주제에 대한 자율성을 제공하였으나 3년 차라는 짧은 연구 기간과 3년 이상의 단위로 연구가 평가되는 특징이 있었다. 이러한 연구 결과는 이공계 대학 연구과제 특성에 따른 운영 형태를 다양한 변인 간의 연관성을 드러내는 실증적 근거로써 활용될 수 있다. 아울러, 본 연구는 향후 이공계 대학 R&D 운영 지원을 위한 정책적·재정적·운영적 지원의 개선 방향을 제시하였다.

문화콘텐츠 빅데이터를 이용한 주가 변수 선행성 분석 (Analysis of the Precedence of Stock Price Variables Using Cultural Content Big Data)

  • 유재필;이지영;정정영
    • 한국콘텐츠학회논문지
    • /
    • 제22권4호
    • /
    • pp.222-230
    • /
    • 2022
  • 최근 한국의 문화콘텐츠 산업이 발전하고 있는 가운데 전 세계적으로 인지도가 높아질 수 있는 배경에는 과학 기술의 발전으로 글로벌 네트워크 사용자들의 실시간 공유 서비스가 있다. 특히 유튜브의 경우에는 한정적인 사용자가 아닌 모든 사람이 잠재적인 영상 제공자가 될 수 있다는 점에서 그 전파력은 빠르고 강력하다. 국내에도 휴대폰 사용자의 약 80% 이상이 유튜브를 이용하고 있는 것으로 나타난 만큼 유튜브의 정보는 사용자의 심리적 요인이 반영되고 있다는 것을 의미한다. 예컨대 특정 성격을 갖고 있는 채널의 영상 조회 수, 좋아요 수 그리고 댓글 수와 같은 정보는 그 채널이 갖는 성격의 관심도에 대한 척도를 보여준다. 이는 포털 사이트의 키워드 검색 빈도와 같은 정보가 경제 심리학적으로 주가 시장과 밀접한 연관이 있다는 것과 관련성이 높다. 따라서 본 연구에서는 대표 엔터테이먼트 사의 유튜브 정보를 크롤링 알고리즘을 통해 수집하고 이를 주가와 관련된 주요 변수와 인과 관계에 대해서 분석한다. 그 결과 유튜브의 관심도는 주가, 주가 변동성 그리고 거래량에 선행적 인과 관계를 보인다는 것을 입증했다. 본 연구는 4차 산업 시대에 맞게 문화콘텐츠, IT 그리고 금융 분야를 접목해서 연구를 진행했다는 점에서 의의가 있다고 사료된다.

원핵생물 1,309종의 보존적 유전자 (Conservative Genes among 1,309 Species of Prokaryotes)

  • 이동근
    • 생명과학회지
    • /
    • 제32권6호
    • /
    • pp.463-467
    • /
    • 2022
  • 원핵생물 1,309종(species)에 보존적인 유전자(ortholog)를 파악하기 위해 1,309종을 대상으로 COG(Cluster of Orthologous Groups of proteins) 기법을 적용하였으며, 그 결과 ribosome protein S11 (COG0100)을 확인하였다. 1,308, 1,307, 1,306 및 1,305종에서 보존된 ortholog의 수는 각각 2, 5, 5 및 6개였다. 1,303종 이상에서 보존된 유전자는 29개였고, 이들은 23개의 리보솜 단백질, 3개의 tRNA 합성효소, 2개의 번역 인자 및 1개의 RNA 중합효소 소단위체 유전자였다. 대부분이 단백질 합성과 연관되어 원핵생물에서 단백질 발현이 중요한 것으로 판단되었다. 29개의 COG 중에서 ribosome protein S12 (COG0048)가 보존성이 가장 높았다. 29개의 보존된 COG는 대개 하나의 원핵생물에 하나의 단백질이 분포하였다. COG0090은 보존성이 가장 낮았으며 phylogenetic distance value의 표준편차도 가장 컸다. COG0090은 리보솜의 구성원 기능 외에 복제와 전사의 조절자 역할을 하기에, 각 원핵생물이 다양한 환경에서 생존하기 위해 변이가 큰 것으로 추론되었다. 이 연구는 기초 과학과 종양 조절 및 항균제 개발에 필요한 데이터를 제공할 수 있을 것이다.

소형민수헬기 능동진동제어시스템 개발 (Development and Verification of Active Vibration Control System for Helicopter)

  • 김남조;곽동일;강우람;황유상;김도형;김찬동;이기진;소희섭
    • 한국항공우주학회지
    • /
    • 제50권3호
    • /
    • pp.181-192
    • /
    • 2022
  • 헬기의 능동진동제어시스템(AVCS)은 주로터로부터 발생되는 진동을 제어하며, 수동형 진동저감장치 대비 저중량으로 우수한 진동저감 성능을 발휘한다. 본 논문에서는 FxLMS 알고리즘을 기반으로 타코미터 및 가속도 센서 신호를 통해 연산된 제어명령을 하중발생기(CFG)로 전달하여 소형민수헬기의 진동을 제어하는 소프트웨어 개발 및 검증 내용을 제시하였다. DO-178C /DO-331 표준에 따라 모델 기반 설계 기법을 통해 진동제어 소프트웨어를 개발하였으며, PILS 및 HILS 환경에서 실시간 작동 성능을 평가하였다. 특히, PILS 환경에서는 LDRA 기반 검증 커버리지를 통해 소프트웨어의 신뢰성을 향상시켰다. AVCS를 소형민수헬기에 적용하기 위해 지상/비행시험을 통해 대상 헬기 동적응답특성 모델을 획득하였다. 이를 기반으로 시스템 최적화 분석 및 비행시험을 통해 최적 성능을 발휘하는 AVCS 형상을 결정하고, STC 인증을 획득하였다.

비전센서 및 딥러닝을 이용한 항만구조물 방충설비 세분화 시스템 개발 (Development of Fender Segmentation System for Port Structures using Vision Sensor and Deep Learning)

  • 민지영;유병준;김종혁;전해민
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제26권2호
    • /
    • pp.28-36
    • /
    • 2022
  • 매립지 위에 건설되는 항만시설물은 바람(태풍), 파랑, 선박과의 충돌 등 극한 외부 하중에 노출되기 때문에 구조물의 안전성 및 사용성을 주기적으로 평가하는 것이 중요하다. 본 논문에서는 항만 계류시설에 설치된 방충설비의 유지관리를 위하여 비전 및 딥러닝 기반의 방충설비 세분화(segmentation) 시스템을 개발하였다. 방충설비 세분화를 위하여 인코더-디코더 형식과 인간 시각체계의 편심 기능에서 영감을 얻은 수용 영역 블록(Receptive field block) 기반의 합성곱 모듈을 DenseNet 형식으로 개선하는 딥러닝 네트워크를 제안하였다. 네트워크 훈련을 위해 BP형, V형, 원통형, 타이어형 등 다양한 형태의 방충설비 영상을 수집하였으며, 탄성 변형, 좌우 반전, 색상 변환 및 기하학적 변환을 통해 영상을 증강시킨 다음 제안한 딥러닝 네트워크를 학습하였다. 기존의 세분화 모델인 VGG16-Unet과 비교하여 제안한 모델의 세분화 성능을 검증하였으며, 그 결과 본 시스템이 IoU 84%, 조화평균 90% 이상으로 정밀하게 실시간으로 세분화할 수 있음을 확인하였다. 제안한 방충설비 세분화 시스템의 현장적용 가능성을 검증하기 위하여 국내 항만 시설물에서 촬영된 영상을 기반으로 학습을 수행하였으며, 그 결과 기존 세분화 모델과 비교하였을 때 우수한 성능을 보이며 정밀하게 방충설비를 감지하는 것을 확인하였다.

스포츠시설에 관한 연구 동향 분석: SCOPUS DB를 중심으로 (Analysis on Research Trends in Sport Facilities: Focusing on SCOPUS DB)

  • 김일광;박성택;박수선;김미숙;박종철
    • 산업융합연구
    • /
    • 제19권6호
    • /
    • pp.11-19
    • /
    • 2021
  • 본 연구의 목적은 "스포츠시설" 관련 국내외 연구의 동향을 탐색적으로 파악하여 향후 연구 방향을 모색하는 데 있다. 이를 위해 2016년부터 2020년까지 SCOPUS DB에서 "스포츠시설"이 포함된 논문의 초록을 수집하였으며, 그 결과 총 1,801편이 자료 분석에 사용되었다. 자료 분석 수행을 위해 LDA 기반 토픽 모델링 기법과 TD-IDF 기법을 활용하였으며, Tagxedo를 활용한 워드클라우드 분석을 수행하였다. 분석 결과, 8가지 토픽이 최적으로 결정되었으며, 각 토픽의 주요 키워드로는 "sports", "facilities", "health", "physical", "data" 및 "using" 등이 도출되었다. 이를 통해 최근에 국내외적으로 스포츠시설과 관련하여 신체활동, 건강 및 시설 이용 등을 주제로 한 연구들이 활발하게 이루어져 왔음을 확인할 수 있었다. 이는 최근 SCOPUS 논문들은 건강 증진과 삶의 질 향상 등과 같은 스포츠시설의 도구적 가치에 주목하고 있음을 의미한다. 따라서, 건강한 삶을 위해 스포츠시설을 이용하는 참여자들에게 도움이 될 수 있는 다양한 연구들이 향후 지속적으로 수행되어야 할 것이다.

영상 기반 Semantic Segmentation 알고리즘을 이용한 도로 추출 (Road Extraction from Images Using Semantic Segmentation Algorithm)

  • 오행열;전승배;김건;정명훈
    • 한국측량학회지
    • /
    • 제40권3호
    • /
    • pp.239-247
    • /
    • 2022
  • 현대에는 급속한 산업화와 인구 증가로 인해 도시들이 더욱 복잡해지고 있다. 특히 도심은 택지개발, 재건축, 철거 등으로 인해 빠르게 변화하는 지역에 해당한다. 따라서 자율주행에 필요한 정밀도로지도와 같은 다양한 목적을 위해 빠른 정보 갱신이 필요하다. 우리나라의 경우 기존 지도 제작 과정을 통해 지도를 제작하면 정확한 공간정보를 생성할 수 있으나 대상 지역이 넓은 경우 시간과 비용이 많이 든다는 한계가 있다. 지도 요소 중 하나인 도로는 인류 문명을 위한 많은 다양한 자원을 제공하는 중추이자 필수적인 수단에 해당한다. 따라서 도로 정보를 정확하고 신속하게 갱신하는 것이 중요하다. 이 목표를 달성하기 위해 본 연구는 Semantic Segmentation 알고리즘인 LinkNet, D-LinkNet 및 NL-LinkNet을 사용하여 광주광역시 도시철도 2호선 공사 현장을 촬영한 드론 정사영상에서 도로를 추출한 다음 성능이 가장 높은 모델에 하이퍼 파라미터 최적화를 적용하였다. 그 결과, 사전 훈련된 ResNet-34를 Encoder로 사용한 LinkNet 모델이 85.125 mIoU를 달성했다. 향후 연구 방향으로 최신 Semantic Segmentation 알고리즘 또는 준지도 학습 기반 Semantic Segmentation 기법을 사용하는 연구의 결과와의 비교 분석이 수행될 것이다. 본 연구의 결과는 기존 지도 갱신 프로세스의 속도를 개선하는 데 도움을 줄 수 있을 것으로 예상된다.

KOMPSAT-3와 Sentinel-1 SAR 영상을 적용한 토양 수분도와 NDWI 결과 비교 분석 (Comparative Analysis of NDWI and Soil Moisture Map Using Sentinel-1 SAR and KOMPSAT-3 Images)

  • 이지현;김광섭;이기원
    • 대한원격탐사학회지
    • /
    • 제38권6_4호
    • /
    • pp.1935-1943
    • /
    • 2022
  • 위성 영상을 활용하여 대규모 또는 정밀 토양 수분도를 제작하는 방법의 개발과 이를 적용한 사례 연구는 원격탐사 응용 분야에서 중요한 연구 주제 중 하나이다. 이 연구는 제주도 연구 지역을 대상으로 토양 수분도를 제작하였다. 이를 위하여 선형으로 조정된 Synthetic Aperture Radar (SAR) 편광 영상과 입사각 정보를 이용하여 광학 영상과 함께 토양 수분도를 산출하였다. SAR 영상은 Google Earth Engine (GEE)에서 제공하는 후반 산란 계수 Analysis Ready Data (ARD) 자료를 사용하였다. 또한 Environmental Systems Research Institute (ESRI)의 토지 피복도(land cover map)와 KOMPSAT-3 고해상도 위성 영상의 지표 반사도로부터 산출한 식생 지수 정보(normalized difference vegetation index, NDVI)를 토양 수분도 처리 과정에 적용하였다. 이처럼 SAR 영상과 광학영상 정보를 융합하여 처리하는 경우는 토양 수분 산출물의 신뢰도를 향상할 수 있는 것으로 알려져 있다. 산출물의 과학적 분석을 위하여 KOMPSAT-3 영상으로 제작한 정규 수분 지수(normalized difference water index, NDWI)와 비교 분석을 실시하였다. 그리고 KOMPSAT-3 처리 결과의 검증을 위하여 Landsat-8 위성의 NDWI 처리 결과와 비교하였다. 이 연구를 통하여 산출한 토양 수분도 결과는 KOMPSAT-3 영상과 Landsat-8 위성으로 각각 처리한 NDWI 처리 결과와 높은 상관도를 나타냈다. 마지막으로 이 연구에 사용한 토양 수분 산출 알고리즘을 우리나라 고해상도 위성인 KOMPSAT-5 영상에 맞게 추가 개발하면 다른 외부 영상 없이 KOMPSAT 광학 위성정보와 KOMPSAT SAR 영상정보를 이용한 정밀 토양 수분도 제작이 가능할 것이라고 생각한다.

교량 구조물 손상탐지를 위한 Open Set Recognition 기반 다중손상 인식 모델 개발 (Development of Open Set Recognition-based Multiple Damage Recognition Model for Bridge Structure Damage Detection)

  • 김영남;조준상;김준경;김문현;김진평
    • 대한토목학회논문집
    • /
    • 제42권1호
    • /
    • pp.117-126
    • /
    • 2022
  • 현재 국내 교량 구조물은 지속적으로 증가 및 대형화되고 있으며 그에 따라 공용된 지 30년 이상 된 노후 교량도 꾸준히 늘어나고 있다. 교량 노후화 문제는 국내뿐 아니라 전 세계적으로도 심각한 사회 문제로 다루어지고 있으며, 기존 인력 위주의 점검 방식은 그 한계점을 드러내고 있다. 최근 들어 딥러닝 기반의 영상처리 알고리즘을 활용한 각종 교량 손상탐지 연구가 이루어지고 있지만 교량 손상 데이터 세트의 한계로 인하여 주로 균열 1종에 국한된 교량 손상탐지 연구가 대부분이고, 이 또한 Close set 분류모델 기반 탐지방식으로서 실제 교량 촬영 영상에 적용했을 시 배경이나 기타 객체 등 학습되지 않은 클래스의 입력 이미지들로 인하여 심각한 오인식 문제가 발생할 수 있다. 본 연구에서는 균열 포함 5종의 교량 손상을 정의 및 데이터 세트를 구축해서 딥러닝 모델로 학습시키고, OpenMax 알고리즘을 적용한 Open set 인식 기반 교량 다중손상 인식 모델을 개발했다. 그리고 학습되지 않은 이미지들을 포함하고 있는 Open set에 대한 분류 및 인식 성능평가를 수행한 후 그 결과를 분석했다.

건설현장 정형·비정형데이터를 활용한 기계학습 기반의 건설재해 예측 모델 개발 (Development of Machine Learning-based Construction Accident Prediction Model Using Structured and Unstructured Data of Construction Sites)

  • 조민건;이동환;박주영;박승희
    • 대한토목학회논문집
    • /
    • 제42권1호
    • /
    • pp.127-134
    • /
    • 2022
  • 현재 국내 건설업에서는 꾸준히 증가하는 건설재해를 예방하기 위해 다양한 정책적 노력과 연구가 활발하게 진행되고 있다. 기존 연구에서 건설재해 예방을 위해 개발한 예측 모델의 경우, 주로 정형데이터만을 활용하였기에 건설현장의 다양한 특성을 충분히 고려하지 못한 예측 결과가 도출되었다. 따라서, 본 연구에서는 정형데이터와 텍스트 형식의 비정형데이터를 동시에 활용하여 건설현장의 특성을 충분히 고려할 수 있는 기계학습 기반 건설재해 사전 예측 모델을 개발하였다. 본 연구는 기계학습을 위해 건설공사 안전관리 종합정보망(CSI)의 최근 3년간 건설재해 데이터 6,826건을 수집하였다. 수집된 데이터 중 정형데이터의 학습은 5가지 알고리즘의 성능 분석을 통해 Decision forest 알고리즘을 사용하였고 비정형데이터의 학습은 BERT 언어모델을 사용하였다. 정형 및 비정형데이터를 동시에 활용한 건설재해 예측 모델의 성능 비교 결과, 정형데이터만을 활용한 경우보다 약 20 % 향상된 95.41 %의 예측정확도가 도출되었다. 본 연구 결과, 비정형데이터를 동시에 활용함으로써 예측 모델의 효과적인 성능 향상을 확인하였으며, 보다 정확한 예측을 통한 건설재해 저감을 기대할 수 있다.