• Title/Summary/Keyword: Algal lytic enzymes

Search Result 3, Processing Time 0.018 seconds

Characterization of Two Algal Lytic Bacteria Associated with Management of the Cyanobacterium Anabaena flos-aquae

  • Kim, Jeong-Dong;Lee, Choul-Gyun
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.5
    • /
    • pp.382-390
    • /
    • 2006
  • Various microorganisms were isolated from the surface waters and sediments of eutrophic lakes and reservoirs in Korea to enable an investigation of bacteria having algal lytic activities against Anabaena flos-aquae when water blooming occurs and to study enzyme profiles of algal lytic bacteria. Two bacterial strains, AFK-07 and AFK-13, were cultured, characterized and identified as Acinetobacter johnsonii and Sinorhizobium sp., respectively. The A. johnsonii AFK-07 exhibited a high level of degradatory activities against A. flos-aquae, and produced alginase, caseinase, lipase, fucodian hydrolase, and laminarinase. Moreover, many kinds of glycosidase, such as ${\beta}-galactosidase,\;{\beta}-glucosidase,\;{\beta}-glucosaminidase,\;and\; {\beta}-xylosidase$, which hydrolyzed ${\beta}-O-glycosidic$ bonds, were found in cell-free extracts of A. johnsonii AFK-07. Other glycosidases such as ${\alpha}-galactosidase,\;{\alpha}-N-Ac-galactosidase,\;{\alpha}-mannosidase,\; and\;{\alpha}-L-fucosidase$, which cleave ${\alpha}-O-glycosidic$ bonds, were not identified in AFK-07. In the Sinorhizobium sp. AFK-13, the enzymes alginase, amylase, proteinase (caseinase and gelatinase), carboxymethyl-cellulase (CMCase), laminarinase, and lipase were notable. No glycosidase was produced in the AFK-13 strain. Therefore, the enzyme system of A. johnsonii AFK-07 had a more complex mechanism in place to degrade the cyanobacteria cell walls than did the enzyme system of Sinorhizobium sp. AFK-13. The polysaccharides or the peptidoglycans of A. flos-aquae may be hydrolyzed and metabolized to a range of easily utilized monosaccharides or other low molecular weight organic substances by strain AFK-07 of. A. johnsonii, while the products of polysaccharide degradation or peptidoglycans were more likely to be utilized by Sinorhizobium sp. AFK-13. These bacterial interactions may offer an alternative effective approach to controlling the water choking effects of summer blooms affecting our lakes and reservoirs.

Identification of Alga-lytic Bacterium AK-07 and Its Enzyme Activities Associated with Degradability of Cyanobacterium Anabaena cylindrica (Anabaena cylindrica 분해세균 AK-07의 동정과 분해 관련 효소활성 조사)

  • Kim, Jeong-Dong;Han, Myung-Soo
    • Korean Journal of Ecology and Environment
    • /
    • v.36 no.2 s.103
    • /
    • pp.108-116
    • /
    • 2003
  • To investigate bacteria with algal Iytic activities against Anabaena cylindrica when water blooming occurs and to study enzyme profiles of alga-Iytic bacteria, various bacterial strains were isolated from surface waters and sediments in eutrophic lakes or reservoirs in Korea. Abacterial strain AK-07 was characterized and identified as Acinetobacter johnsonii based on its16S rDNA base sequence. When AK-07 was co-cultivated with A. cylindrica, bacterial cells propagated to $8\;{\times}\;10^8$ cfu $ml^{-1}$ and Iyses algal cells. However, culture filtrates of AK-07 did not exhibit algal Iytic activities. That suggesting the enzymes on the surfaces of the bacterium might be effective algal Iytic agents to cause Iyses of cells. Acinetobacter johnsonii AK-07 exhibited high degradation activities against A. cylindrica, and formed alginase, caseinase, lipase, fucodian hydrolase, and laminarinase. Moreover, glycosidases for example ${\beta}$-galatosidase, ${\beta}$-glucosidase, ${\beta}$-glucosaminidase, and ${\beta}$-xylosidase, which hydrolyzed ${\beta}$-0-glycosidic bonds, were found in cell-free extracts of A. johnsonii AK-07. Other glycosidase such as ${\alpha}$-galctosidases, ${\alpha}$-N-Ac-galctosidases, ${\alpha}$-mannosidases, and ${\alpha}$- L-fuco-sidases, which cleavage ${\alpha}$-0-glycosidic bondsare not detected. In the results, enzyme systemsof A. johnsonii AK-07 were very complex to do-grade cell walls of cyanobacteria. The polysaccharides or peptidoglycans of A. cylindrica maybe hydrolyzed and metabolized to a range of easily utilizable monosaccharides or other low molecular weight organic substances by strain AK-07 of A. johnsonii.

Antioxidant Activity of Manno-oligosaccharides Derived from the Hydrolysis of Polymannan by Extracellular Carbohydrase of Bacillus N3

  • Amna, Kashif Shaheen;Park, So Yeon;Choi, Min;Kim, Sang Yeon;Yoo, Ah Young;Park, Jae Kweon
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.10 no.1
    • /
    • pp.9-17
    • /
    • 2018
  • The aim of this study is to elucidate the biochemical properties of manno-oligosaccharides (MOS) hydrolyzed by extracellular enzyme of Bacillus N3. We strived to characterize the biochemical properties of MOS since N3 can effectively hydrolyzed natural polymannans such as galactomannan (GM) and konjac (glucomannan, KM), respectively. The hydrolysis of GM and KM was applied by the strain N3 in terms of reducing sugars and the highest production of reducing sugars was estimated to be about 750 mg/L and 370 mg/L respectively, which were quantified after 7 days of cultivation in the presence of both substrates. Hydrolysates derived from the hydrolysis of KM showed the significant antioxidant activity based on DPPH and ABTS radical scavenging activity with increasing of tyrosinase inhibitory activity. On the other hand, hydrolysates derived from the hydrolysis of GM showed only ABTS radical scavenging activity without showing significant changes on tyrosinase inhibitory activity. Our data suggest that those biological characteristics may be depend on the primary structure and the size of MOS, which may be useful as potent additives for diet foods.