Characterization of Two Algal Lytic Bacteria Associated with Management of the Cyanobacterium Anabaena flos-aquae

  • Kim, Jeong-Dong (Institute of Industrial Biotechnology, Department of Biological Engineering, Inha University) ;
  • Lee, Choul-Gyun (Institute of Industrial Biotechnology, Department of Biological Engineering, Inha University)
  • Published : 2006.10.30

Abstract

Various microorganisms were isolated from the surface waters and sediments of eutrophic lakes and reservoirs in Korea to enable an investigation of bacteria having algal lytic activities against Anabaena flos-aquae when water blooming occurs and to study enzyme profiles of algal lytic bacteria. Two bacterial strains, AFK-07 and AFK-13, were cultured, characterized and identified as Acinetobacter johnsonii and Sinorhizobium sp., respectively. The A. johnsonii AFK-07 exhibited a high level of degradatory activities against A. flos-aquae, and produced alginase, caseinase, lipase, fucodian hydrolase, and laminarinase. Moreover, many kinds of glycosidase, such as ${\beta}-galactosidase,\;{\beta}-glucosidase,\;{\beta}-glucosaminidase,\;and\; {\beta}-xylosidase$, which hydrolyzed ${\beta}-O-glycosidic$ bonds, were found in cell-free extracts of A. johnsonii AFK-07. Other glycosidases such as ${\alpha}-galactosidase,\;{\alpha}-N-Ac-galactosidase,\;{\alpha}-mannosidase,\; and\;{\alpha}-L-fucosidase$, which cleave ${\alpha}-O-glycosidic$ bonds, were not identified in AFK-07. In the Sinorhizobium sp. AFK-13, the enzymes alginase, amylase, proteinase (caseinase and gelatinase), carboxymethyl-cellulase (CMCase), laminarinase, and lipase were notable. No glycosidase was produced in the AFK-13 strain. Therefore, the enzyme system of A. johnsonii AFK-07 had a more complex mechanism in place to degrade the cyanobacteria cell walls than did the enzyme system of Sinorhizobium sp. AFK-13. The polysaccharides or the peptidoglycans of A. flos-aquae may be hydrolyzed and metabolized to a range of easily utilized monosaccharides or other low molecular weight organic substances by strain AFK-07 of. A. johnsonii, while the products of polysaccharide degradation or peptidoglycans were more likely to be utilized by Sinorhizobium sp. AFK-13. These bacterial interactions may offer an alternative effective approach to controlling the water choking effects of summer blooms affecting our lakes and reservoirs.

Keywords

References

  1. Fay, P. (1992) Oxygen relations of nitrogen fixation in cyanobacteria. Microbiol. Rev. 56: 340-373
  2. Khan, Z. U. M., Z. U. T. Begum, R. Mandal, and M. Z. Hossain (1994) Cyanobacteria in rice soils. World J. Microbiol. Biotechol. 10: 296-298 https://doi.org/10.1007/BF00414867
  3. Ral, L. C., H. D. Kumar, F. H. Mohn, and C. J. Soeder (2000) Services of algae to the environment. J. Microbiol. Biotechnol. 10: 119-136 https://doi.org/10.1159/000027961
  4. Carmichael, W. W. (1994) The toxins of cyanobacteria. Sci. Am. 270: 64-72 https://doi.org/10.1038/scientificamerican0194-64B
  5. Lee, W.-J. and K.-S. Bae (2001) The phylogenetic relationship of several Osillatorian cyanobacteria, forming blooms of Daecheong reservoirs, based on partial 16S rRNA gene sequences. J. Microbiol. Biotechnol. 11: 504-507
  6. Reyssac, S. J. and M. Pletikosic (1990) Cyanobacteria in fishponds. Aquaculture 88: 1-20 https://doi.org/10.1016/0044-8486(90)90315-E
  7. Harada, K. I. (1996) Chemistry and detection of micro-cystins. In: M. F. Watanabe, K. I. Harada, W. W. Carmichael, and H. Fujiki (eds.). Toxic Microcystis. CRC press, London, UK
  8. Slater, G. P. and V. C. Blok (1983) Volatile compounds of the cyanophyceae - a review. Water Sci. Technol. 15: 181-190
  9. Tsuchiya, Y., M. F. Watanabe, and M. Watanabe (1992) Volatile organic sulfur compounds associated with blue-green algae from inland waters of Japan. Water Sci. Technol. 25: 123-130
  10. Mcguire, R. M., J. M. Jones, E. G. Means, and G. Lzaguire (1984) Controlling attached blue-green algae with copper sulfate. Res. Technol. 27: 60-65
  11. Burnham, J. C., S. A. Collart, and B. W. Highison (1981) Entrapment and lysis of the cyanobacterium Phormidium luridum by aqueous colonies of Myxococcus xanthus $PCO_2$. Arch. Microbiol. 129: 285-294 https://doi.org/10.1007/BF00414699
  12. Burnham, J. C., T. Stecak, and G. Locher (1976) Extracellularsis of the blue-green algae Phormidium luridum by Bdellovibrio bacteriovorus. J. Phycol. 12: 306-313
  13. Yamamoto, Y., T. Kouchiwa, Y. Hodoki, K. Hotta, H. Uchida, and K.-I. Harada (1998) Distribution and identification of actinomycetes lysing cyanobacteria in a eutro-phic lake. J. Appl. Phycol. 10: 391-397 https://doi.org/10.1023/A:1008077414808
  14. Yamamoto, Y. and K. Suzuki (1990) Distribution and algal-lysing activity of fruiting myxobacteria in Lake Suwa. J. Phycol. 26: 457-462 https://doi.org/10.1111/j.0022-3646.1990.00457.x
  15. Gonzalez, J. M., W. B. Whitman, R. E. Hodson, and M. A. Moran (1996) Identifying numerically abundant culturable bacteria from complex communities: an example from a lignin enrichment culture. Appl. Environ. Microbiol. 62: 4433-4440
  16. Rippka, R. (1988) Isolation and purification of cyanobacteria. Methods Enzymol. 167: 3-27 https://doi.org/10.1016/0076-6879(88)67004-2
  17. Castenholz, R. W. (1988) Culturing methods for cyanobacteria. Methods Enzymol. 167: 68-92 https://doi.org/10.1016/0076-6879(88)67006-6
  18. Shilo, M. (1970) Lysis of blue-green algae by myxobacter. J.Bacteriol. 104:453-461
  19. Gerhardt, P., R. G. F. Murray, W. A. Wood, and N. R. Krieg (1994) Methods for general and molecular bacteriology. American Society for Microbiology Press, Washington, DC, USA
  20. De Ley, J. (1970) Reexamination of the association between melting point, buoyant density, and chemical base composition of deoxyribonucleic acid. J. Bacteriol. 101: 738-754
  21. Marmur, J. and P. Doty (1962) Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J. Mol. Biol. 5: 109-118 https://doi.org/10.1016/S0022-2836(62)80066-7
  22. De Ley, J. and J. Van Muylem (1963) Some applications of deoxyribonucleic acid base composition in bacterial taxonomy. Antonie van Leeuwenhoek J. Microbiol. Serol. 29: 344-358
  23. Hartig, C., N. Loffhagen, and W Babel (1999) Glucose stimulates a decrease of the fatty acid saturation degree in Acinetobacter calcoaceticus. Arch. Microbiol. 171: 166-172 https://doi.org/10.1007/s002030050695
  24. Yoon, J.-H., S.-T. Lee, S.-B. Kim, W. Y. Kim, M. Goodfellow, and Y.-H. Park (1997) Restriction fragment length polymorphisms analysis of PCR-amplified 16S ribosomal DNA for rapid identification of Saccharomonospora strains. Int. J. Syst. Bacteriol. 47: 111-114 https://doi.org/10.1099/00207713-47-1-111
  25. Stackebrandt, E. and W. Liesack (1993) Nucleic acids and classification. In: M. Goodfellow and A. G. O. Donnell (eds.J. Handbook of New Bacterial Systematics. Academic press, London, UK
  26. Nigam, P., G. Armour, I. M. Banat, D. Singh, and R. Marchant (2000) Physical removal of textile dyes from effluents and solid-state fermentation of dye-adsorbed agricultural residues. Bioresour. Technol. 72: 219-226 https://doi.org/10.1016/S0960-8524(99)00123-6
  27. Felsenstein, J. (1992) PHYLIP: Phylogenetic Inference Package. Version 3.5. Seattle, University of Washington, Washington, DC, USA
  28. Saitou, N. and M. Nei (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425
  29. Somogyi, M. (1952) Notes in sugar determination. J. Bio. Chem. 195: 19-23
  30. Nelson, N. J. (1955) Colorimetric analysis of sugars. Methods Enzymol. 3: 85-86
  31. Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  32. Wayne, L. G., R. C. Good, A. Tsang, R. Butler, D. Dawson, D. Groothuis, W. Gross, J. Hawkins, J. Kilbum, and M. Kubin (1993) Serovar determination and molecular taxo-nomic correlation in Mycobacterium avium, Mycobacterium intracellulare, and Mycobacterium scrofulaceum: a cooperative study of the International Working Group on Mycobacterial Taxonomy. Int. J. Syst. Bacteriol. 43: 482-489 https://doi.org/10.1099/00207713-43-3-482
  33. Guha, S. and P. R. Jaffe (1996) Biodegradation kinetics of phenanthrene partitioned into the micellar phase of non-ionic surfactants. Environ. Sci. Technol. 30: 605-611 https://doi.org/10.1021/es950385z
  34. Kobayashi, H. and B. E. Ritmann (1982) Microbial removal of hazardous organic compounds. Environ. Sci. Technol. 16: 170-183 https://doi.org/10.1021/es00097a724
  35. Daft, M. J. and W. D. Stewart (1971) Bacterial pathogens of freshwater blue-green algae. New Phytol. 70: 819-829 https://doi.org/10.1111/j.1469-8137.1971.tb02582.x
  36. Gerber, G. B., A. Leonard, and P. Hantson (2002) Carcinogenicity, mutagenicity and teratogenicity of manganese compounds. Crit. Rev. Oncol. Hematol. 42: 25-34 https://doi.org/10.1016/S1040-8428(01)00178-0
  37. Jarvis, B. D. W, S. Sivakumaran, S. W. Tighe, and M. Gillis (1996) Identification of Agrobacterium and Rhizo-bium species based on cellular fatty acid composition. Plant Soil 184: 143-158 https://doi.org/10.1007/BF00029284
  38. Graham, P. H., M. J. Sadowsky, and S. W. Tighe (1995) Differences among strains of Bradyrhizobium in fatty acid-methyl ester analysis. Can. J. Microbiol. 41: 1038-1042 https://doi.org/10.1139/m95-144
  39. Yokota, A., T. Sakane, K. Ophel, and H. Sawada (1993) Further studies on the cellular fatty acid composition of Rhizobium and Agrobacterium species. IFO Res. Comm. 16: 86-94
  40. Na, K.-I., M.-D. Kim, W.-K. Min, J.-A. Kim, W.-J. Lee, D.-O. Kim, K. M. Park, and J.-H. Seo (2005) Expression and purification of ubiquitin-specific protease (UBP1) of Saccharomyces cerevisiae in recombinant Escherichia coli. Biotechnol. Bioprocess Eng. 10: 599-602 https://doi.org/10.1007/BF02932301
  41. Sallal, A. K. (1994) Lysis of cyanobacteria with Flexibacter spp. isolated from domestic sewage. Microbios 11: 51-61
  42. Kim, C. H., Y. K. Choi, and B. R. Min (1997) Lysis of Anabaena cylindrica (cyanobacterium) cell wall by extracellular enzyme of Moraxella sp. CK-1. Kor. J. Environ. Biol. 15: 89-97
  43. Warren, R. A. (1996) Microbial hydrolysis of polysaccharides. Ann. Rev. Microbiol. 50: 183-212 https://doi.org/10.1146/annurev.micro.50.1.183
  44. Shoda, M. and Y. Sugano (2005) Recent advances in bacterial cellulose production. Biotechnol. Bioprocess Eng. 10: 1-8 https://doi.org/10.1007/BF02931175
  45. Hrmova, M. and G. B. Fincher (2001) Structure-function relationships of beta-D-glucan endo- and exohydrolases from higher plants. Plant Mol. Biol. 47: 73-91 https://doi.org/10.1023/A:1010619128894
  46. Gummadi, S. N. and K. Kumar (2005) Production of extracellular water insoluble beta-l,3-glucan (curdlan) from Bacillus sp. SNC07. Biotechnol. Bioprocess Eng. 10: 546-551 https://doi.org/10.1007/BF02932292
  47. Mitsutani, A., A. Uchida, and Y. Ishida (1988) Occurrence of blue-green algae and algal lytic bacteria in Lake Biwa. Bull. Jap. Soc. Microbiol. Ecol. 2: 21-28
  48. Kang, S.-I, Y.-B. Jang, Y.-J. Choi, and J.-Y. Kong (2005) Purification and properties of a collagenolytic protease produced by marine bacterium Vibrio vulnificus CYK279H. Biotechnol. Bioprocess Eng. 10: 593-598 https://doi.org/10.1007/BF02932300