• Title/Summary/Keyword: Sinorhizobium sp.

Search Result 6, Processing Time 0.026 seconds

Enzyme Profiles of Alga-Lytic Bacterial Strain AK-13 Related with Elimination of Cyanobacterium Anabaena cylindrica

  • Kim, Jeong-Dong;Han, Myung-Soo
    • Korean Journal of Environmental Biology
    • /
    • v.22 no.1
    • /
    • pp.184-191
    • /
    • 2004
  • To investigate bacteria with algalytic activities against Anabaena cylindrica when water blooming occurs and to study enzyme profiles associated with alga-lytic activity, various bacterial strains were isolated from surface waters and sediments in eutrophic lakes or reservoirs in Korea. Among 178 isolates, only nine isolates exhibited lytic abilities against A cylindrica on the agar plates, and then the isolate AK-13 was selected as the strongest in lysing the cyanobacterium A. cytindrica. The strain AK-13 was characterized and identified as Sinorhizobium sp. based on fatty acid methyl ether profiles and 16S rDNA sequence. According to the results of the enzyme assays, in the strain An-13 of Sinorhizobium sp., alginase, amylase, proteinase (caseinase and gelatinase), carboxymethyl-cellulase (CMCase), laminarinase, and lipase was produced, namely CMCase, laminarinase and protease were highly active. None of glycosidase was produced. Therefore, enzyme systems of Sinorhizobium sp. AK-13 were very complex to degrade cell walls of A. cylindrica. The peptidoglycans of A. cylindrica mat be hydrolyzed and metabolized to a range of easily utilizable monosaccharides or other low molecular weight organic substances by Sinorhizobium sp. AK-13.

Characterization of Two Algal Lytic Bacteria Associated with Management of the Cyanobacterium Anabaena flos-aquae

  • Kim, Jeong-Dong;Lee, Choul-Gyun
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.5
    • /
    • pp.382-390
    • /
    • 2006
  • Various microorganisms were isolated from the surface waters and sediments of eutrophic lakes and reservoirs in Korea to enable an investigation of bacteria having algal lytic activities against Anabaena flos-aquae when water blooming occurs and to study enzyme profiles of algal lytic bacteria. Two bacterial strains, AFK-07 and AFK-13, were cultured, characterized and identified as Acinetobacter johnsonii and Sinorhizobium sp., respectively. The A. johnsonii AFK-07 exhibited a high level of degradatory activities against A. flos-aquae, and produced alginase, caseinase, lipase, fucodian hydrolase, and laminarinase. Moreover, many kinds of glycosidase, such as ${\beta}-galactosidase,\;{\beta}-glucosidase,\;{\beta}-glucosaminidase,\;and\; {\beta}-xylosidase$, which hydrolyzed ${\beta}-O-glycosidic$ bonds, were found in cell-free extracts of A. johnsonii AFK-07. Other glycosidases such as ${\alpha}-galactosidase,\;{\alpha}-N-Ac-galactosidase,\;{\alpha}-mannosidase,\; and\;{\alpha}-L-fucosidase$, which cleave ${\alpha}-O-glycosidic$ bonds, were not identified in AFK-07. In the Sinorhizobium sp. AFK-13, the enzymes alginase, amylase, proteinase (caseinase and gelatinase), carboxymethyl-cellulase (CMCase), laminarinase, and lipase were notable. No glycosidase was produced in the AFK-13 strain. Therefore, the enzyme system of A. johnsonii AFK-07 had a more complex mechanism in place to degrade the cyanobacteria cell walls than did the enzyme system of Sinorhizobium sp. AFK-13. The polysaccharides or the peptidoglycans of A. flos-aquae may be hydrolyzed and metabolized to a range of easily utilized monosaccharides or other low molecular weight organic substances by strain AFK-07 of. A. johnsonii, while the products of polysaccharide degradation or peptidoglycans were more likely to be utilized by Sinorhizobium sp. AFK-13. These bacterial interactions may offer an alternative effective approach to controlling the water choking effects of summer blooms affecting our lakes and reservoirs.

An Ultrastructural Investigation of Infection Threads in Sesbania rostrata Stem Nodules Induced by Sinorhizobium sp. Strain MUS10

  • Krishnan Hari B.
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.49 no.4
    • /
    • pp.316-324
    • /
    • 2004
  • Sinorhizobium sp. strain MUS10 forms nitrogen-fixing stem nodules on Sesbania rostrata, a tropical green manure crop. In this study, the ultrastructural events associated with the formation of stem nodules were investigated. Sinorhizobium sp. strain MUS10 entered the host tissue through cracks created by the emerging adventitious root primordia and multiplied within the intercellular spaces. During early phases of infection, host cells adjacent to invading bacteria revealed cellular damage that is typical of hypersensitive reactions, while the cells at the inner cortex exhibited meristematic activity. Infection threads were numerous in S-day-old nodules and often were associated with the host cell wall. In several cases, more than one infection thread was found in individual cells. The junction at which the host cell walls converged was often enlarged due to fusion of intracellular branches of infection threads resulting in large infection pockets. The infection threads were made up of a homogeneous, amorphous matrix that enclosed the bacteria. Several finger-like projections were seen radiating from these enlarged infection threads and were delineated from the host cytoplasm by the plasma membrane. As in Azorhizobium caulinodans induced root nodules, the release of Sinorhizobia from the infection threads into the plant cells appears to be mediated by 'infection droplets'. A 15-day­old Sesbania stem nodule revealed typical ultrastructure features of a determinate nodule, containing several bacterioids within symbiosomes.

Colonization of Microbial Biofilms in Pipeline of Water Reuse

  • Kumjaroen, Teratchara;Chiemchaisri, Wilai;Chiemchaisri, Chart
    • Environmental Engineering Research
    • /
    • v.19 no.3
    • /
    • pp.275-281
    • /
    • 2014
  • Aim of this study was to investigate biofilms attached in pipeline of water reuse from the MBR system treating sewage without chlorination in correlation to the outflow water quality. Two general pipe materials: polyvinyl chloride (PVC) and polyethylene (PE) were employed in the experiment. The peak growths were found at week 4 in both pipes. The maximum biofilms in PE pipe was $33mgVSS/cm^2$ with the growth rate of $4.75mgVSS/cm^2-d$ which was significant higher than that of PVC pipe. Biofilms examined by PCR-DGGE technique revealed five bacterial species in PE biofilms namely Sinorhizobium medicae WSM419, Sinorhizobium fredii NGR234, Geobacter sp. M18, Parachlamydia acanthamoebae UV-7, and Mycobacterium chubuense NBB4. The VSS concentrations in outflow had directly correlated to the biofilm attachment and detachment. High COD concentrations of outflow appeared during biofilm detaching phase. In summary, water quality of reuse water corresponded to the biofilms attachment and detachment in the pipeline.

Isolation of an Indigenous Imidacloprid-Degrading Bacterium and Imidacloprid Bioremediation Under Simulated In Situ and Ex Situ Conditions

  • Hu, Guiping;Zhao, Yan;Liu, Bo;Song, Fengqing;You, Minsheng
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.11
    • /
    • pp.1617-1626
    • /
    • 2013
  • The Bacterial community structure and its complexity of the enrichment culture during the isolation and screening of imidacloprid-degrading strain were studied using denaturating gradient gel electrophoresis analysis. The dominant bacteria in the original tea rhizosphere soil were uncultured bacteria, Rhizobium sp., Sinorhizobium, Ochrobactrum sp., Alcaligenes, Bacillus sp., Bacterium, Klebsiella sp., and Ensifer adhaerens. The bacterial community structure was altered extensively and its complexity reduced during the enrichment process, and four culturable bacteria, Ochrobactrum sp., Rhizobium sp., Geobacillus stearothermophilus, and Alcaligenes faecalis, remained in the final enrichment. Only one indigenous strain, BCL-1, with imidacloprid-degrading potential, was isolated from the sixth enrichment culture. This isolate was a gram-negative rod-shaped bacterium and identified as the genus Ochrobactrum based on its morphological, physiological, and biochemical properties and its 16S rRNA gene sequence. The degradation test showed that approximately 67.67% of the imidacloprid (50 mg/l) was degraded within 48 h by strain BCL-1. The optimum conditions for degradation were a pH of 8 and $30^{\circ}C$. The simulation of imidacloprid bioremediation by strain BCL-1 in soil demonstrated that the best performance in situ (tea soil) resulted in the degradation of 92.44% of the imidacloprid (100 mg/g) within 20 days, which was better than those observed in the ex situ simulations that were 64.66% (cabbage soil), 41.15% (potato soil), and 54.15% (tomato soil).

MaoC Mediated Biosynthesis of Medium-chain-length Polyhydroxyalkanoates in Recombinant Escherichia coli from Fatty Acid (재조합 대장균에서 MaoC를 이용한 지방산으로부터의 중간사슬길이 폴리하이드록시알칸산 생산 연구)

  • Park, Si Jae;Lee, Seung Hwan;Oh, Young Hoon;Lee, Sang Yup
    • KSBB Journal
    • /
    • v.29 no.4
    • /
    • pp.244-249
    • /
    • 2014
  • Biosynthesis pathway of medium-chain-length (MCL) polyhydroxyalkanoates (PHA) from fatty acid ${\beta}$-oxidation pathway was constructed in recombinant Escherichia coli by introducing the Pseudomonas sp. 61-3 PHA synthase gene (phaC2) and the maoC genes from Pseudomonas putida, Sinorhizobium meliloti, and Ralstonia eutropha. The metabolic link between fatty acid ${\beta}$-oxidation pathway and PHA biosynthesis pathway was constructed by MaoC, which is homologous to P. aeruginosa (R)-specific enoyl-CoA hydratase (PhaJ1). When the E. coli W3110 strains expressing the phaC2 gene and one of the maoC genes from P. putida, Sinorhizobium meliloti, and Ralstonia eutropha were cultured in LB medium containing 2 g/L of sodium decanoate as a carbon source, MCL-PHA that mainly consists of 3-hydroxyhexanoate (3HHx), 3-hydroxyoctanoate (3HO) and 3-hydroxydecanoate (3HD), was produced. The monomer composition of PHA and PHA contents varied depending on MaoC employed for the production of PHA. The highest PHA content of 18.7 wt% was achieved in recombinant E. coli W3110 expressing the phaC2 gene and the P. putida maoC gene. These results suggest that MCL-PHA biosynthesis pathway can be constructed in recombinant E. coli strains from the b-oxidation pathway by employing MaoC able to supply (R)-3-hydroxyacyl-CoA, the substrate of PHA synthase.