DOI QR코드

DOI QR Code

MaoC Mediated Biosynthesis of Medium-chain-length Polyhydroxyalkanoates in Recombinant Escherichia coli from Fatty Acid

재조합 대장균에서 MaoC를 이용한 지방산으로부터의 중간사슬길이 폴리하이드록시알칸산 생산 연구

  • Park, Si Jae (Department of Environmental Engineering and Energy, Myongji University) ;
  • Lee, Seung Hwan (Industrial Biochemicals Research Group, Research Center for Biobased Chemistry, Division of Convergence Chemistry, Korea Research Institute of Chemical Technology) ;
  • Oh, Young Hoon (Industrial Biochemicals Research Group, Research Center for Biobased Chemistry, Division of Convergence Chemistry, Korea Research Institute of Chemical Technology) ;
  • Lee, Sang Yup (Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Center for Systems and Synthetic Biotechnology, and Institute for the BioCentury, KAIST)
  • 박시재 (명지대학교 환경에너지공학과) ;
  • 이승환 (한국화학연구원 바이오화학연구센터) ;
  • 오영훈 (한국화학연구원 바이오화학연구센터) ;
  • 이상엽 (한국과학기술원 생명화학공학과)
  • Received : 2014.07.03
  • Accepted : 2014.07.22
  • Published : 2014.08.31

Abstract

Biosynthesis pathway of medium-chain-length (MCL) polyhydroxyalkanoates (PHA) from fatty acid ${\beta}$-oxidation pathway was constructed in recombinant Escherichia coli by introducing the Pseudomonas sp. 61-3 PHA synthase gene (phaC2) and the maoC genes from Pseudomonas putida, Sinorhizobium meliloti, and Ralstonia eutropha. The metabolic link between fatty acid ${\beta}$-oxidation pathway and PHA biosynthesis pathway was constructed by MaoC, which is homologous to P. aeruginosa (R)-specific enoyl-CoA hydratase (PhaJ1). When the E. coli W3110 strains expressing the phaC2 gene and one of the maoC genes from P. putida, Sinorhizobium meliloti, and Ralstonia eutropha were cultured in LB medium containing 2 g/L of sodium decanoate as a carbon source, MCL-PHA that mainly consists of 3-hydroxyhexanoate (3HHx), 3-hydroxyoctanoate (3HO) and 3-hydroxydecanoate (3HD), was produced. The monomer composition of PHA and PHA contents varied depending on MaoC employed for the production of PHA. The highest PHA content of 18.7 wt% was achieved in recombinant E. coli W3110 expressing the phaC2 gene and the P. putida maoC gene. These results suggest that MCL-PHA biosynthesis pathway can be constructed in recombinant E. coli strains from the b-oxidation pathway by employing MaoC able to supply (R)-3-hydroxyacyl-CoA, the substrate of PHA synthase.

Keywords

References

  1. Lee, S. Y. (1996) Bacterial polyhydroxyalkanoates. Biotechnol. Bioeng. 49: 1-14. https://doi.org/10.1002/(SICI)1097-0290(19960105)49:1<1::AID-BIT1>3.3.CO;2-1
  2. Madison, L. L. and G. W. Huisman (1999) Metabolic engineering of poly(3-hydroxyalkanoates): from DNA to plastic. Microbiol. Mol. Biol. Rev. 63: 21-53.
  3. Steinbüchel, A. and H. E. Valentin (1995) Diversity of bacterial polyhydroxyalkanoic acid. FEMS Microbiol. Lett. 128: 219-228. https://doi.org/10.1111/j.1574-6968.1995.tb07528.x
  4. Qi, Q., B. H. A. Rehm, and A. Steinbuchel (1997) Synthesis of poly(3-hydroxyalkanoates) in Escherichia coli expressing the PHA synthase gene phaC2 from Pseudomonas aeruginosa: comparison of PhaC1 and PhaC2. FEMS Microbiol. Lett. 157: 155-162. https://doi.org/10.1111/j.1574-6968.1997.tb12767.x
  5. Langenbach, S., B. H. A. Rehm, and A. Steinbuchel (1997) Functional expression of the PHA synthase gene phaC1 from Pseudomonas aeruginosa in Escherichia coli results in poly(3-hydroxyalkanoate) synthesis. FEMS Microbiol. Lett. 150: 303-309. https://doi.org/10.1016/S0378-1097(97)00142-0
  6. Qi, Q., A. Steinbüchel, and B. H. A. Rehm (1998) Metabolic routing towards polyhydroxyalkanoic acid synthesis in recombinant Escherichia coli (fadR): inhibition of fatty acid beta-oxidation by acrylic acid. FEMS Microbiol. Lett. 167: 89-94.
  7. Ren, Q., N. Sierro, B. Witholt, and B. Kessler (2000) FabG, an NADPH-dependent 3-ketoacyl reductase of Pseudomonas aeruginosa, provides precursors for medium-chain-length poly-3-hydroxyalkanoate biosynthesis in Escherichia coli. J. Bacteriol. 182: 2978-2981. https://doi.org/10.1128/JB.182.10.2978-2981.2000
  8. Taguchi, K., Y. Aoyagi, H. Matsusaki, T. Fukui, and Y. Doi (1999) Co-expression of 3-ketoacyl-ACP reductase and polyhydroxyalkanoate synthase genes induces PHA production in Escherichia coli HB101 strain. FEMS Microbiol. Lett. 176: 183-190. https://doi.org/10.1111/j.1574-6968.1999.tb13660.x
  9. Park, S. J., J. P. Park, and S. Y. Lee (2002) Metabolic engineering of Escherichia coli for the production of medium-chain-length polyhydroxyalkanoates rich in specific monomers. FEMS Microbiol. Lett. 214: 217-222. https://doi.org/10.1111/j.1574-6968.2002.tb11350.x
  10. Tsuge, T., T. Fukui, H. Matsusaki, S. Taguchi, G. Kobayashi, A. Ishizaki, and Y. Doi (2000) Molecular cloning of two (R)-specific enoyl-CoA hydratase genes from Pseudomonas aeruginosa and their use for polyhydroxyalkanoate synthesis. FEMS Microbiol. Lett. 184: 193-198. https://doi.org/10.1111/j.1574-6968.2000.tb09013.x
  11. Tsuge, T., K. Taguchi, S. Taguchi, and Y. Doi (2003) Molecular characterization and properties of (R)-specific enoyl-CoA hydrata-ses from Pseudomonas aeruginosa: metabolic tools for synthesis of polyhydroxyalkanoates via fatty acid $\beta$-oxidation. Int. J. Biol. Macromol. 31: 195-205. https://doi.org/10.1016/S0141-8130(02)00082-X
  12. Snell, K. D., F. Feng, L. Zhong, D. Martin, and L. L. Madison (2002) YfcX enables medium-chain-length poly(3-hydroxyalkanoate) formation from fatty acids in recombinant Escherichia coli fadB strains. J. Bacteriol. 184: 5696-5705. https://doi.org/10.1128/JB.184.20.5696-5705.2002
  13. Park, S. J. and Lee, S. Y. (2003) Identification and characterization of a new enoyl-coA hydratase involved in the biosynthesis of medium-chain-length polyhydroxyalkanoates in recombinant Escherichia coli. J. Bacteriol. 185: 5391-5397. https://doi.org/10.1128/JB.185.18.5391-5397.2003
  14. Wang, Q., R. C. Tappel., C. Zhu., and C. T. Nomura. (2012) Development of a new strategy for production of medium-chain-length polyhydroxyalkanoates by recombinant Escherichia coli via inexpensive non-fatty acid feedstocks. Appl. Environ. Microbiol. 78: 519-527. https://doi.org/10.1128/AEM.07020-11
  15. Sato, S., H. Kanazawa., and T. Tsuge (2011) Expression and characterization of (R)-specific enoyl coenzyme A hydratases making a channeling route to polyhydroxyalkanoate biosynthesis in Pseudomonas putida. Appl. Microbiol. Biotechnol. 90: 951-959. https://doi.org/10.1007/s00253-011-3150-5
  16. Braunegg, G., B. Sonnleitner, and R. M. Lafferty (1978) A rapid gas chromatographic method for the determination of poly-$\beta$-hydroxybutyric acid in microbial biomass. Eur. J. Appl. Microbiol. Biotechnol. 6: 29-37. https://doi.org/10.1007/BF00500854
  17. Choi, J., S. Y. Lee, K. Shin, W. G. Lee, S. J. Park, H. N. Chang, and Y. K. Chang (2002) Pilot scale production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by fed-batch culture of recombinant Escherichia coli. Biotechnol. Bioprocess Eng. 7: 371-374. https://doi.org/10.1007/BF02933524