• Title/Summary/Keyword: AlInN

Search Result 3,181, Processing Time 0.034 seconds

Insulating Behavior of Sintered AlN Ceramics Prepared by High-Energy Bead Milling of AlN Powder (AlN 분말의 고에너지 밀링에 따른 소결체의 절연 특성)

  • Ryu, Sung-Soo;Lee, Sung-Min
    • Journal of Powder Materials
    • /
    • v.24 no.6
    • /
    • pp.444-449
    • /
    • 2017
  • Aluminum nitride (AlN) powder specimens are treated by high-energy bead milling and then sintered at various temperatures. Depending on the solvent and milling time, the oxygen content in the AlN powder varies significantly. When isopropyl alcohol is used, the oxygen content increases with the milling time. In contrast, hexane is very effective at suppressing the oxygen content increase in the AlN powder, although severe particle sedimentation after the milling process is observed in the AlN slurry. With an increase in the milling time, the primary particle size remains nearly constant, but the particle agglomeration is reduced. After spark plasma sintering at $1400^{\circ}C$, the second crystalline phase changes to compounds containing more $Al_2O_3$ when the AlN raw material with an increased milling time is used. When the sintering temperature is decreased from $1750^{\circ}C$ to $1400^{\circ}C$, the DC resistivity increases by approximately two orders of magnitude, which implies that controlling the sintering temperature is a very effective way to improve the DC resistivity of AlN ceramics.

Effect of Targets on Synthesis of Aluminum Nitride Thin Films Deposited by Pulsed Laser Deposition (펄스레이저법으로 증착 제조된 AlN박막의 타겟 효과)

  • Chung, J.K.;Ha, T.K.
    • Transactions of Materials Processing
    • /
    • v.29 no.1
    • /
    • pp.44-48
    • /
    • 2020
  • Aluminum nitride (AlN), as a substrate material in electronic packaging, has attracted considerable attention over the last few decades because of its excellent properties, which include high thermal conductivity, a coefficient of thermal expansion that matches well with that of silicon, and a moderately low dielectric constant. AlN films with c-axis orientation and thermal conductivity characteristics were deposited by using Pulsed Laser Deposition (PLD). The epitaxial AlN films were grown on sapphire (c-Al2O3) single crystals by PLD with AlN target and Y2O3 doped AlN target. A comparison of different targets associated with AlN films deposited by PLD was presented with particular emphasis on thermal conductivity properties. The quality of AlN films was found to strongly depend on the growth temperature that was exerted during deposition. AlN thin films deposited using Y2O3-AlN targets doped with sintering additives showed relatively higher thermal conductivity than while using pure AlN targets. AlN thin films deposited at 600℃ were confirmed to have highly c-axis orientation and thermal conductivity of 39.413 W/mK.

High Temperature Oxidation Characteristics of the (Ti, Al)N Coating on the STS 304 by D.C. Magnetron Sputtering (D.C. Magnetron Sputter를 이용한 (Ti, Al)N 피막의 고온산화특성)

  • 최장현;이상래
    • Journal of the Korean institute of surface engineering
    • /
    • v.25 no.5
    • /
    • pp.235-252
    • /
    • 1992
  • (Ti, Al)N films were deposited on 304 stainless steel sheet by D.C. magnetron sputtering using Al target and Ti plate. The high temperature oxidation of (T, Al)N films with the variation of composition has been investigated. The chemical composition of (Ti, Al)N films with the variation of composition has been investigated. The chemical composition of (Ti, Al)N films was similar to the sputter area ratio of titanium to aluminum target by means of EDS and AES survey. The high temperature oxidation test of (Ti, Al)N showed that (Ti, Al)N has better high temperature resistance than TiN and TiC films. TiC films were cracked at 40$0^{\circ}C$ in air TiN films quickly were oxidised at $600^{\circ}C$, were spalled more than $700^{\circ}C$. But (Ti, Al)N films are relatively stable to$ 900^{\circ}C$. The good resistance to high temperature oxida-tion of (Ti, Al)N films are due to the formation of dense Al2O3 and TiO2 oxide layer. Especially, Al2O3 oxide layer is more important. The results obtained from this study show, it is believe that the (Ti, Al)N film by D.C. magnetron sputtering is promising for the use of high temperature and wear resistance mate-rials.

  • PDF

Structural properties and optical studies of two-dimensional electron gas in Al0.55Ga0.45/GaN heterostructures with low-temperature AlN interlayer (저온 성장 AlN 층이 삽입된 Al0.55Ga0.45N/AlN/GaN 이종접합 구조의 구조적 특성 및 이차원 전자가스의 광학적 특성)

  • Kwack, H.S.;Lee, K.S.;Kim, H.J.;Yoon, E.;Cho, Y.H.
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.1
    • /
    • pp.34-39
    • /
    • 2008
  • We have investigated the characteristics of $Al_{0.55}Ga_{0.45}N$/GaN heterostructures with and without low-temperature (LT) AlN interlayer grown by metalorganic chemical vapor deposition. The structural and optical properties were systematically studied by Rutherford backscattering spectroscopy (RBS), X-ray diffraction (XRD), optical microscopy (OMS), scanning electron microscopy (SEM), and photoluminescence (PL). The Al content (x) of 55% and the structural properties of $Al_xGa_{1-x}N$/GaN heterostructures were investigated by using RBS and XRD, respectively. We carried out OMS and SEM experiments and obtained a decrease of the crack network in $Al_{0.55}Ga_{0.45}N$ layer with LT-AlN interlayer. A two-dimensional electron gas (2DEG)-related PL peak located at ${\sim}3.437eV$ was observed at 10 K for $Al_{0.55}Ga_{0.45}N$/GaN with LT-AlN interlayer. The 2DEG-related emission intensity gradually decreased with increasing temperature and disappeared at temperatures around 100 K. In addition, with increasing the excitation power above 3.0 mW, two 2DEG-related PL peaks were observed at ${\sim}3.411$ and ${\sim}3.437eV$. The observed lower-energy and higher-energy side 2DEG peaks were attributed to the transitions from the sub-band level and the Fermi energy level of 2DEG at the AlGaN/LT-AlN/GaN heterointerface, respectively.

Investigation of Oxygen Incorporation in AlGaN/GaN Heterostructures

  • Jang, Ho-Won;Baik, Jeong-Min;Lee, Jong-Lam;Shin, Hyun-Joon;Lee, Jung-Hee
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.3 no.2
    • /
    • pp.96-101
    • /
    • 2003
  • Direct evidence on the incorporation of high concentration of oxygen into undoped AlGaN layers for the AlGaN/GaN heterostuctures is provided by scanning photoemission microscopy using synchrotron radiation. In-situ annealing at $1000^{\circ}C$ resulted in a significant increase in the oxygen concentration at the AlGaN surface due to the predominant formation of Al-O bonds. The oxygen incorporation into the AlGaN layers resulting from the high reactivity of Al to oxygen can enhance the tunneling-assisted transport of electrons at the metal/AlGaN interface, leading to the reduction of the Schottky barrier height and the increase of the sheet carrier concentration near the AlGaN/GaN interface.

Sputtering of Multifunctional AlN Passivation Layer for Thermal Inkjet Printhead

  • Park, Min-Ho;Kim, Sang-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.50-50
    • /
    • 2011
  • The aluminum nitride films were prepared by RF magnetron sputtering using an AlN ceramic target. The crystallinity, grain size, Al-N bonding and thermal conductivity were investigated in dependence on the plasma power densities (4.93, 7.40, 9.87 W/$cm^2$) during sputtering. High thermal conductivity is important properties of A1N passivation layer for functioning properly in thermal inkjet printhead. The crytallinity, grain size, Al-N bonding formation and chemical composition were observed using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), fourier transform infrared (FTIR) and X-ray photoelectron spectroscopy (XPS), respectively. The AlN thin film was changed from amorphous to crystalline as the power density was increased, and the largest grain size appeared at medium power density. The near stoichiometry Al-N bonding ratio was acquired at medium power density. So, we know that the AlN thin film had better thermal conductivity with crystalline phase and near stoichometry Al-N bonding ratio at 7.40 W/$cm^2$ power density.

  • PDF

Microstructural Evolution of Aluminum Nitride - Yttrium Aluminum Garnet Composite Coatings by Plasma Spraying from Different Feedstock Powders (Aluminum Nitride - Yttrium Aluminum Garnet 분말 특성과 플라즈마 용사 코팅층의 미세조직)

  • So, Woong-Sub;Baik, Kyeong-Ho
    • Korean Journal of Materials Research
    • /
    • v.21 no.2
    • /
    • pp.106-110
    • /
    • 2011
  • A high thermal conductive AlN composite coating is attractive in thermal management applications. In this study, AlN-YAG composite coatings were manufactured by atmospheric plasma spraying from two different powders: spray-dried and plasma-treated. The mixture of both AlN and YAG was first mechanically alloyed and then spray-dried to obtain an agglomerated powder. The spray-dried powder was primarily spherical in shape and composed of an agglomerate of primary particles. The decomposition of AlN was pronounced at elevated temperatures due to the porous nature of the spray-dried powder, and was completely eliminated in nitrogen environment. A highly spherical, dense AlN-YAG composite powder was synthesized by plasma alloying and spheroidization (PAS) in an inert gas environment. The AlN-YAG coatings consisted of irregular-shaped, crystalline AlN particles embedded in amorphous YAG phase, indicating solid deposition of AlN and liquid deposition of YAG. The PAS-processed powder produced a lower-porosity and higher-hardness AlN-YAG coating due to a greater degree of melting in the plasma jet, compared to that of the spray-dried powder. The amorphization of the YAG matrix was evidence of melting degree of feedstock powder in flight because a fully molten YAG droplet formed an amorphous phase during splat quenching.

Effects of deposition conditions on the properties of AlTiN films (증착 조건이 AlTiN 박막의 특성에 미치는 영향)

  • Kim, Seong-Hwan;Yang, Ji-Hun;Song, Min-A;Jeong, Jae-Hun;Jeong, Jae-In
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2015.11a
    • /
    • pp.162-162
    • /
    • 2015
  • 증착 조건이 AlTiN 박막의 특성에 미치는 영향에 대하여 평가하였다. 한편, 공정변수의 하나로 빗각 증착을 적용하여 AlTiN 박막을 제조하고 그 특성을 평가하였다. Al-25at.%Ti 합금타겟을 음극 아크 소스에 장착하여 AlTiN 박막을 코팅하였다. 기판은 stainless steel(SUS304)과 초경(tungsten carbide; WC)을 사용하였다. 음극 아크 소스에 인가되는 전류가 낮을수록 AlTiN 박막 표면에 존재하는 거대입자의 밀도가 낮아졌으며, 공정 압력과 기판 전압이 높을수록 AlTiN 박막의 표면에 존재하는 거대입자의 밀도가 낮아지는 경향을 보였다. 코팅 공정 중 질소 유량을 변화했지만 AlTiN 박막의 특성에 변화는 없었다. AlTiN 박막 증착 시 빗각을 적용한 결과, $60^{\circ}$의 빗각을 적용한 다층 박막에서 약 33 GPa의 경도를 보였다. AlTiN 박막의 내산화성을 평가한 결과, $600^{\circ}C$이상에서 안정된 내산화성을 확인할 수 있었다.

  • PDF

Characteristics of AlTiN coatings deposited by cathodic arc plasma process (음극 아크 플라즈마 공정으로 증착된 AlTiN 코팅막의 특성)

  • Kim, Seong-Hwan;Yang, Ji-Hun;Song, Min-A;Jeong, Jae-Hun;Jeong, Jae-In
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2015.05a
    • /
    • pp.67-67
    • /
    • 2015
  • 음극 아크 플라즈마 공정을 이용하여 증착된 AlTiN 코팅막의 공정 변화에 따른 물리적 특성 변화를 평가하였다. 또한 빗각 증착을 적용하여 제조한 AlTiN 코팅막의 특성을 평가하였다. Al-25at.%Ti 합금타겟을 음극 아크 소스에 장착하여 AlTiN 박막을 코팅하였다. 기판은 stainless steel(SUS304)과 초경(tungsten carbide; WC)을 사용하였다. 음극 아크 소스에 인가되는 전류가 낮을수록 AlTiN 코팅막 표면에 존재하는 거대입자의 밀도가 낮아졌으며, 공정 압력과 기판 전압이 높을수록 AlTiN 코팅막의 표면에 존재하는 거대입자의 밀도가 낮아지는 경향을 보였다. 코팅 공정 중 질소 유량을 변화했지만 AlTiN 코팅막의 특성은 변하지 았았다. AlTiN 코팅막 증착 시 빗각을 적용한 결과, $60^{\circ}$의 빗각을 적용한 다층 코팅막에서 약 33 GPa의 경도를 보였다. AlTiN 코팅막의 내산화성을 평가한 결과, $600^{\circ}C$이상에서 안정된 내산화성을 확인할 수 있었다.

  • PDF

High Quality AlN Layer Regrown on AlN Nanostructure by Hydride Vapor Phase Epitaxy (나노구조를 응용한 AlN 성장 방법 및 특성)

  • Son, Hoki;Gim, Jinwon;Lim, Tea-Young;Lee, Mijai;Kim, Jin-Ho;Jeon, Dae-Woo;Hwang, Jonghee;Oh, Hae-Kon;Choi, YoungJun;Lee, Hae-Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.11
    • /
    • pp.711-714
    • /
    • 2015
  • In this paper, high quality AlN layers were regrown on AlN nanopillar structure with $SiO_2$-dots by HVPE. Surface morphology of AlN layer regrown exhibited flatter than a conventional AlN template. The laterally overgrown AlN regions would consist of a continuous well coalesced layer with lower dislocation density than in the template because of the dislocation blocking and dislocation bending effects. Moreover, result of Raman spectroscopy suggest that the AlN nanopillar structure with $SiO_2$-dots relieves the strain in the AlN layer regrown by HVPE.